| 注册
首页|期刊导航|现代电子技术|面向人体异常行为识别的FDS-ABPG-GoogLeNet模型研究

面向人体异常行为识别的FDS-ABPG-GoogLeNet模型研究

李一帆 李聪聪 李亚南 王斌

现代电子技术2025,Vol.48Issue(6):136-146,11.
现代电子技术2025,Vol.48Issue(6):136-146,11.DOI:10.16652/j.issn.1004-373x.2025.06.021

面向人体异常行为识别的FDS-ABPG-GoogLeNet模型研究

Research on FDS-ABPG-GoogLeNet model for human abnormal behavior recognition

李一帆 1李聪聪 1李亚南 1王斌1

作者信息

  • 1. 河北农业大学 信息科学与技术学院,河北 保定 071001
  • 折叠

摘要

Abstract

With the exacerbation of population aging,the identification technology of abnormal behaviors in the elderly has become a critical issue urgently needing to be addressed in the healthcare field.The current abnormal behavior recognition algorithm is faced with a challenge,that is,it cannot ensure the recognition accuracy and computational efficiency of the model while recognizing various abnormal behaviors.To address this issue,the FDS-ABPG-GoogLeNet model is proposed.In this model,three improved Inception modules at different levels are incorporated,and they are connected in parallel in both deep and shallow network structures.The residual structure is introduced in the middle structure,which significantly improves the computational efficiency and recognition accuracy of the network by means of the feature fusion.In order to solve the problem of single action in abnormal behavior data set,a dataset containing multiple abnormal actions is self built.By graphically processing one-dimensional action time series data in two dimensions,it makes it easier to extract behavioral action features.The experimental results demonstrate that the proposed FDS-ABPG-GoogLeNet model can realize an accuracy,senstivity,and specificity of 99.40%,99.49%,and 99.93%,respectively.

关键词

异常行为识别/Inception模块/残差结构/特征融合/特征提取/卷积神经网络

Key words

abnormal behavior recognition/Inception module/residual structure/feature fusion/feature extraction/convolutional neural network

分类

电子信息工程

引用本文复制引用

李一帆,李聪聪,李亚南,王斌..面向人体异常行为识别的FDS-ABPG-GoogLeNet模型研究[J].现代电子技术,2025,48(6):136-146,11.

基金项目

河北省教育厅科学研究重点项目(ZD2021056) (ZD2021056)

河北省高等学校科学研究项目(203777119D) (203777119D)

2023河北省引进海外留学人员计划(C20230333) (C20230333)

现代电子技术

OA北大核心

1004-373X

访问量0
|
下载量0
段落导航相关论文