| 注册
首页|期刊导航|现代信息科技|基于YOLOv9葡萄病害识别检测算法研究

基于YOLOv9葡萄病害识别检测算法研究

萧峥嵘 梁烨锋 李菲 王义宗 田纪亚

现代信息科技2025,Vol.9Issue(4):64-68,73,6.
现代信息科技2025,Vol.9Issue(4):64-68,73,6.DOI:10.19850/j.cnki.2096-4706.2025.04.013

基于YOLOv9葡萄病害识别检测算法研究

Research on Grape Disease Identification and Detection Algorithm Based on YOLOv9

萧峥嵘 1梁烨锋 1李菲 1王义宗 1田纪亚1

作者信息

  • 1. 新疆理工学院 信息工程学院,新疆 阿克苏 843100
  • 折叠

摘要

Abstract

As one of the latest versions in the YOLO series of models,YOLOv9 features convenient platform transplantation and simple detection procedures.Compared with traditional image recognition technologies,object detection models based on Deep Learning possess stronger feature extraction and generalization capabilities,and can better recognize complex objects and scenes.Based on the research on YOLOv9c grape disease identification and detection algorithm,aiming at the issues such as low recognition accuracy and long processing time existing in traditional disease recognition methods,this paper conducts recognition of seven types of grape diseases in China,and the average detection metric mAP50 reaches 92.7%after training.Experimental results demonstrate that this method can achieve real-time detection of grape diseases,significantly improving agricultural production efficiency and meeting the precision and real-time requirements of grape disease detection application scenarios.

关键词

YOLOv9/葡萄病害/实时检测/损失函数/高性能

Key words

YOLOv9/grape diseases/real-time detection/loss function/high-performance

分类

计算机与自动化

引用本文复制引用

萧峥嵘,梁烨锋,李菲,王义宗,田纪亚..基于YOLOv9葡萄病害识别检测算法研究[J].现代信息科技,2025,9(4):64-68,73,6.

基金项目

国家级大学生创新创业训练计划项目(202413558003) (202413558003)

2021年度校级项目(ZY202105) (ZY202105)

2023年度校级重点项目(ZZ202303) (ZZ202303)

现代信息科技

2096-4706

访问量0
|
下载量0
段落导航相关论文