| 注册
首页|期刊导航|现代信息科技|基于集成学习的金融交易欺诈识别研究

基于集成学习的金融交易欺诈识别研究

郑德铭 李思佳 潘彦恺 郑健龙

现代信息科技2025,Vol.9Issue(4):173-178,6.
现代信息科技2025,Vol.9Issue(4):173-178,6.DOI:10.19850/j.cnki.2096-4706.2025.04.033

基于集成学习的金融交易欺诈识别研究

Research on Financial Transaction Fraud Identification Based on Ensemble Learning

郑德铭 1李思佳 2潘彦恺 2郑健龙1

作者信息

  • 1. 中国人民警察大学 研究生院,河北 廊坊 065000
  • 2. 中国人民警察大学 智慧警务学院,河北 廊坊 065000
  • 折叠

摘要

Abstract

Financial fraud seriously threatens the stability of financial markets,and the existing anti-fraud methods have the problems of singleness and inefficiency.Therefore,this paper constructs a financial transaction fraud recognition model based on the Ensemble Learning method,aiming to improve the fraud recognition effect.In the research,four basic models are constructed by Bagging and Boosting,and two models with better effects are selected by optimizing parameters.Subsequently,the Stacking method is used to conduct fusion training for the two models,which further improves the recognition rate of the model.The experimental results show that the fusion model has significant advantages in financial transaction fraud identification.Compared with the basic model,it has higher accuracy with different datasets,especially in dealing with complex fraud patterns and new means,showing higher accuracy and stability.This improved model method provides effective decision support for financial decision makers and relevant departments,and helps to improve the security of financial markets.

关键词

集成学习/金融欺诈/Boosting/Stacking

Key words

Ensemble Learning/financial fraud/Boosting/Stacking

分类

信息技术与安全科学

引用本文复制引用

郑德铭,李思佳,潘彦恺,郑健龙..基于集成学习的金融交易欺诈识别研究[J].现代信息科技,2025,9(4):173-178,6.

基金项目

河北省社会科学基金项目(HB22SH011) (HB22SH011)

现代信息科技

2096-4706

访问量3
|
下载量0
段落导航相关论文