| 注册
首页|期刊导航|液晶与显示|基于CNN的异构FPGA硬件加速器设计

基于CNN的异构FPGA硬件加速器设计

籍浩林 徐伟 朴永杰 吴晓斌 高倓

液晶与显示2025,Vol.40Issue(3):448-456,9.
液晶与显示2025,Vol.40Issue(3):448-456,9.DOI:10.37188/CJLCD.2024-0198

基于CNN的异构FPGA硬件加速器设计

Design of heterogeneous FPGA hardware accelerator based on CNN

籍浩林 1徐伟 2朴永杰 2吴晓斌 1高倓1

作者信息

  • 1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033||中国科学院大学,北京 100049||中国科学院 天基动态快速光学成像技术重点实验室,吉林 长春 130033
  • 2. 中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033||中国科学院 天基动态快速光学成像技术重点实验室,吉林 长春 130033
  • 折叠

摘要

Abstract

Due to limitations in hardware platform computing power and storage resources,achieving energy-efficient and efficient convolutional neural networks(CNNs)by using embedded systems remains a primary challenge for hardware designers.In this context,a complete design of a heterogeneous embedded system implemented by using a system-on-chip(SoC)with a field-programmable gate array(FPGA)is proposed.This design adopts a cascaded input multiplexing structure,enabling two independent multiply-accumulate operations in a single DSP,reducing external memory access,enhancing system efficiency,and lowering power consumption.Compared to other designs,the power efficiency is improved by over 38.7%.The design framework is successfully deployed in a large-scale CNN network on low-cost devices,significantly improving power efficiency of the network model.The power efficiency achieved on the ZYNQ XC7Z045 device can even reach 102 Gops/W.Furthermore,when inferring the VGG-16's CONV layers by using this framework,a frame rate of up to 10.9 fps is achieved,which demonstrates the framework's effective acceleration of CNN inference in power-constrained environments.

关键词

硬件加速/卷积神经网络/FPGA/异构SoC

Key words

hardware acceleration/convolutional neural network/FPGA/heterogeneous SoC

分类

计算机与自动化

引用本文复制引用

籍浩林,徐伟,朴永杰,吴晓斌,高倓..基于CNN的异构FPGA硬件加速器设计[J].液晶与显示,2025,40(3):448-456,9.

基金项目

钱学森空间技术实验室创新工作站开发基金(No.GZZKFJJ2020003) Supported by Qian Xuesen Laboratory of Space Technology Innovation Workstation Development Foundation(No.GZZKFJJ2020003) (No.GZZKFJJ2020003)

液晶与显示

OA北大核心

1007-2780

访问量0
|
下载量0
段落导航相关论文