烟台大学学报(自然科学与工程版)2025,Vol.38Issue(1):1-7,7.DOI:10.13951/j.cnki.37-1213/n.231201
一类具非线性梯度项的p-拉普拉斯方程严格凸的整体径向大解的存在性
Existence of Strictly Convex Entire Radial Large Solutions for a Class of p-Laplace Equation with Nonlinear Gradient Terms
摘要
Abstract
We consider the p-Laplace equations with weighted nonlinear gradient terms Δpu=b(|x|)f(u)|Vu|q,x∈ R N,under the Keller-Osserman type condition on f.A new general assumption on the weight functions,b,is provided,and a necessary and sufficient condition for the existence of increasing strictly convex entire positive ra-dial large solutions to this problem is established.关键词
p-拉普拉斯方程/Keller-Osserman型条件/严格凸正整体径向大解/存在性/充分必要条件Key words
p-Laplace equation/the Keller-Osserman type condition/entire positive strictly convex radial large so-lutions/existence/necessary and sufficient condition分类
数学引用本文复制引用
黄丽霞,马云杰,张志军..一类具非线性梯度项的p-拉普拉斯方程严格凸的整体径向大解的存在性[J].烟台大学学报(自然科学与工程版),2025,38(1):1-7,7.基金项目
山东省自然科学基金资助项目(ZR2022MA020). (ZR2022MA020)