首页|期刊导航|中国人口·资源与环境|人工智能嵌入促进贸易隐含碳减排

人工智能嵌入促进贸易隐含碳减排OA北大核心

Artificial intelligence embeddedness facilitating trade-embodied carbon reduction:evidence from firms in high-carbon China's industries in China

中文摘要英文摘要

在"双碳"目标背景下,探讨人工智能嵌入产业链的数智化转型能否有效推动贸易隐含碳减排,已成为重要的理论与实践问题.该研究基于2008-2023年中国沪深A股高碳行业上市公司面板数据,构建包含行业、企业和时间维度的分析框架,并综合运用工具变量法和门槛效应模型等计量经济模型,探讨人工智能嵌入对贸易隐含碳减排的影响效应及其作用机制.研究发现:①人工智能嵌入显著促进了贸易隐含碳减排,且两者之间呈现非线性U形关系.在技术导入初期,因高研发门槛与技术扩散滞后,减排成效有限;而当嵌入程度超过阈值后,数智化赋能效应显现,显著推动碳减排.②机制分析表明,人工智能嵌入通过促进产业链数字技术创新、智能制造融合与能源结构转型3个路径实现碳减排目标.其中,数字化创新通过优化数据要素配置,提升生产效率并减少能源消耗;智能制造融合协同加速了全产业链绿色化和高效化改造;能源结构低碳化转型则通过优化能源利用结构,推动清洁能源在产业链中的深度应用,实现碳减排.③异质性分析显示,人工智能嵌入对东部地区、国有企业、大型企业及高技术企业的碳减排效应尤为显著,且在产业带动和创新驱动阶段效果更为突出,而在科技引导期则可能抑制减排目标的实现.研究通过引入产业链数智化这一中介变量,揭示人工智能嵌入与贸易隐含碳减排之间的内在作用机制,从区域、所有制、企业规模及技术水平等多维视角系统分析了其差异化影响.结论表明,人工智能嵌入是实现贸易"双碳"目标的重要驱动力,其通过数智化路径优化产业链生产方式、提升能源效率和引领绿色转型,为高碳行业的低碳发展提供实践依据和政策参考.

In the context of China's'dual carbon'goals of achieving peak carbon emissions and carbon neutrality,it has become an important theoretical and practical concern to explore whether the digital-intelligent transformation through artificial intelligence(AI)embedded in the industrial chain can effectively promote the reduction of trade-embodied carbon emissions.Based on the panel data from A-share listed companies in high-carbon industries in Shanghai and Shenzhen stock exchanges from 2008 to 2023,this study con-structed an analytical framework incorporating industrial,corporate,and temporal dimensions.Furthermore,it comprehensively used the instrumental variable method and the threshold effect model to explore the impact of AI embeddedness on trade-embodied carbon reduction and its mechanisms.The results showed that:① AI embeddedness significantly promoted trade-embodied carbon reduction,exhibiting a nonlinear U-shaped relationship between the two.In the early stage of technology adoption,the emission reduction effect was limited due to the high R&D threshold and lagging technology diffusion.However,when the embedding degree exceeded the thresh-old,the enabling effect of digital intelligence appeared,significantly promoting carbon reduction.② Mechanism analysis showed that AI embeddedness achieved carbon reduction targets by promoting digital technology innovation of the industrial chain,integrating intel-ligent manufacturing,and transforming energy structures.Among them,digital innovation improved production efficiency and reduced energy consumption by optimizing the allocation of data elements.Integrating intelligent manufacturing jointly accelerated the green and efficient transformation of the whole industrial chain.Meanwhile,low-carbon transformation of the energy structures facilitated the in-depth application of clean energy in the industrial chain by optimizing the energy utilization structure,thereby achieving carbon emission reduction.③ Heterogeneity analysis demonstrated that the carbon reduction effects of AI embeddedness were significant in the eastern region,state-owned enterprises,large enterprises,and high-tech enterprises.These effects were more prominent during the industry-driven and innovation-driven stages,while in the technology guidance period,it tended to inhibit the achievement of reduction targets.By introducing the intermediary variable of digital-intelligent transformation of the industrial chain,this study revealed the inter-nal mechanisms of action between AI embeddedness and trade-embodied carbon reduction.It systematically analyzed the differentiated impact from multi-dimensional perspectives such as region,ownership,enterprise scale,and technology level.The conclusion shows that AI embeddedness is an important driving force for achieving the'dual carbon'goals in trade.

庞磊;焦世杰

云南师范大学经济学院,云南 昆明 650500云南师范大学经济学院,云南 昆明 650500

经济学

贸易隐含碳减排人工智能嵌入产业链数智化高碳行业企业

trade-embodied carbon reductionartificial intelligence(AI)embeddednessdigital-intelligent transformation of the indus-try chainfirms in high-carbon industries

《中国人口·资源与环境》 2025 (1)

39-49,11

国家社会科学基金后期资助项目"数字经济提升中国产业链安全性稳定性的实践与路径研究"(批准号:23FJYB012)国家社会科学基金一般项目"新质生产力推动我国产业链优化升级的机制与路径研究"(批准号:24BJL095).

10.12062/cpre.20241137

评论