| 注册
首页|期刊导航|大数据|代码大语言模型赋能的知识图谱关键技术综述

代码大语言模型赋能的知识图谱关键技术综述

李紫宣 白龙 任韦澄 苏淼 刘文轩 陈磊 靳小龙

大数据2025,Vol.11Issue(2):19-28,10.
大数据2025,Vol.11Issue(2):19-28,10.DOI:10.11959/j.issn.2096-0271.2025022

代码大语言模型赋能的知识图谱关键技术综述

Review of key technologies in knowledge graphs powered by code large language models

李紫宣 1白龙 1任韦澄 1苏淼 1刘文轩 1陈磊 2靳小龙1

作者信息

  • 1. 中国科学院网络数据科学与技术重点实验室,中国科学院计算技术研究所,北京 100080||中国科学院大学计算机科学与技术学院,北京 100080
  • 2. 中国工程院战略咨询中心,北京 100088
  • 折叠

摘要

Abstract

Traditional knowledge graph technologies still face significant challenges in converting human knowledge,expressed in natural language,into a formal language-based knowledge graph and utilizing it effectively.In recent years,code large language models(LLMs)have demonstrated remarkable capabilities in understanding both natural and formal languages,as well as in translating between them.These advancements are expected to drive significant breakthroughs in developing next-generation knowledge graph technologies.This paper reviews the application of code LLMs in KGs.Firstly,this paper systematically analyzes the role of code LLMs in enhancing key knowledge graph technologies across three critical areas:construction,reasoning,and question-answering.Secondly,a relatively detailed introduction to the existing methodologies in these areas is provided.Finally,this paper summarizes the current state in the field and offers insights into the future of knowledge graph technologies empowered by code LLMs.In the future,knowledge representation based on programming languages is expected to enable more efficient,automated,and complex operations on knowledge graphs,realizing knowledge programming.

关键词

知识图谱/代码大语言模型/大语言模型

Key words

knowledge graph/code large language model/large language model

分类

计算机与自动化

引用本文复制引用

李紫宣,白龙,任韦澄,苏淼,刘文轩,陈磊,靳小龙..代码大语言模型赋能的知识图谱关键技术综述[J].大数据,2025,11(2):19-28,10.

基金项目

国家自然科学基金项目(No.62306299,No.62406308) The National Natural Science Foundation of China(No.62306299,No.62406308) (No.62306299,No.62406308)

大数据

2096-0271

访问量9
|
下载量0
段落导航相关论文