| 注册
首页|期刊导航|大数据|有限标签下的非平衡数据流分类方法

有限标签下的非平衡数据流分类方法

李艳红 李志华 郑建兴 白鹤翔 郭鑫

大数据2025,Vol.11Issue(2):107-126,20.
大数据2025,Vol.11Issue(2):107-126,20.DOI:10.11959/j.issn.2096-0271.2025018

有限标签下的非平衡数据流分类方法

Imbalanced data stream classification method with limited labels

李艳红 1李志华 1郑建兴 1白鹤翔 1郭鑫1

作者信息

  • 1. 山西大学计算机与信息技术学院,山西 太原 030006||山西大学计算智能与中文信息处理教育部重点实验室,山西 太原 030006
  • 折叠

摘要

Abstract

Data stream classification is a crucial research area within data stream mining,with the core task of swiftly capturing concept drifts from real-time incoming data stream and promptly adjusting classification models.Extreme learning machine possesses advantages such as fast training speeds and excellent generalization performance.However,existing data stream classification methods based on extreme learning machine often struggle to simultaneously address common challenges in data stream,such as multi-class imbalance,concept drift,and the expensive labeling cost.For this reason,an imbalanced data stream classification with limited labels was proposed.We defined a sample prediction certainty measure that combined the difference in predicted probabilities and information entropy.An uncertainty label request strategy was introduced.Furthermore,we defined a sample importance measure based on class imbalance ratios and sample prediction errors.We also proposed an update and reconstruction mechanism for the classifier based on the concept drift index.Comparative experiments on six synthetic data streams and three real data streams demonstrate that the proposed method outperforms six existing data stream classification methods in terms of classification performance.

关键词

数据流分类/多类非平衡/极限学习机/概念漂移/标签成本昂贵

Key words

data stream classification/multi-class imbalance/extreme learning machine/concept drift/expensive labeling cost

分类

计算机与自动化

引用本文复制引用

李艳红,李志华,郑建兴,白鹤翔,郭鑫..有限标签下的非平衡数据流分类方法[J].大数据,2025,11(2):107-126,20.

基金项目

国家自然科学基金项目(No.62272286,No.41871286) (No.62272286,No.41871286)

山西省基础研究计划项目(No.202203021221001,No.202203021221021) The National Natural Science Foundation of China(No.62272286,No.41871286),The Fundamental Research Program of Shanxi Province(No.202203021221001,No.202203021221021) (No.202203021221001,No.202203021221021)

大数据

2096-0271

访问量0
|
下载量0
段落导航相关论文