| 注册
首页|期刊导航|地理空间信息|利用自适应邻域特征估算与优选提取电力线

利用自适应邻域特征估算与优选提取电力线

袁超 李元达 陈昌耀 刘建明

地理空间信息2025,Vol.23Issue(3):58-60,65,4.
地理空间信息2025,Vol.23Issue(3):58-60,65,4.DOI:10.3969/j.issn.1672-4623.2025.03.014

利用自适应邻域特征估算与优选提取电力线

Power Line Extraction Based on Self-adaptive Neighborhood Feature Estimation and Optimization

袁超 1李元达 2陈昌耀 3刘建明4

作者信息

  • 1. 江苏省水文地质工程地质勘察院,江苏 淮安 223400
  • 2. 杭州同济测绘有限公司,浙江 杭州 310000
  • 3. 浙江华东测绘与工程安全技术有限公司,浙江 杭州 310014
  • 4. 河南省地球物理空间信息研究院有限公司,河南 郑州 450009
  • 折叠

摘要

Abstract

In response to the demand of power line information extraction in rapid power inspection under complex terrain,based on airborne LiDAR data,we proposed a power line extraction algorithm based on self-adaptive neighborhood feature estimation and optimization.Firstly,based on the elevation characteristics of power lines,we separated non power line points.Then,we constructed multi-dimensional point cloud features based on self-adaptive neighborhood,and used the support vector machine-recursive feature elimination(SVM-RFE)algorithm to achieve optimal feature selection.Finally,we combined the optimal features,and used SVM and random forest method to classify point cloud,achieving the extraction of power lines.The result indicates that this method has high accuracy in power line information extraction and high applicability.

关键词

机载LiDAR/电力线/自适应邻域/特征优选

Key words

airborne LiDAR/power line/self-adaptive neighborhood/optimal feature selection

分类

天文与地球科学

引用本文复制引用

袁超,李元达,陈昌耀,刘建明..利用自适应邻域特征估算与优选提取电力线[J].地理空间信息,2025,23(3):58-60,65,4.

基金项目

基于新一代星载LiDAR数据的中国30m分辨率森林高度反演研究(42071405). (42071405)

地理空间信息

1672-4623

访问量0
|
下载量0
段落导航相关论文