| 注册
首页|期刊导航|高电压技术|基于多模态对比学习的输电线路螺栓缺陷分类

基于多模态对比学习的输电线路螺栓缺陷分类

张珂 郑朝烨 石超君 赵振兵 肖扬杰

高电压技术2025,Vol.51Issue(2):630-641,12.
高电压技术2025,Vol.51Issue(2):630-641,12.DOI:10.13336/j.1003-6520.hve.20232123

基于多模态对比学习的输电线路螺栓缺陷分类

Transmission Line Bolt Defects Classification Based on Multi-modal Contrastive Learning

张珂 1郑朝烨 2石超君 1赵振兵 1肖扬杰2

作者信息

  • 1. 华北电力大学电子与通信工程系,保定 071003||华北电力大学河北省电力物联网技术重点实验室,保定 071003
  • 2. 华北电力大学电子与通信工程系,保定 071003
  • 折叠

摘要

Abstract

Bolt images collected in transmission line inspection have the characteristics of low resolution and insufficient visual information.To solve the problem that traditional image classification models struggle to learn rich-semantic visual representations from bolt images,this paper proposes a method of bolt defect classification based on multi-modal contras-tive learning.Firstly,in order to inject bolt-related semantic information and prior knowledge into the visual representation in a cross-modal manner,a two-stage training algorithm which combines the multi-modal contrastive pre-training and supervised fine-tuning is proposed.Secondly,to alleviate the overfitting in multi-modal contrastive pre-training,the info noise contrastive estimation loss with label smoothing(infoNCE-LS)is proposed to improve the generalization of the pre-trained visual representation.Finally,aimed at the mismatch between the upstream and down-stream tasks,three types of classification heads based on text prompts are designed to improve the transfer learning performance of the pre-trained visual representation in the supervised fine-tuning stage.The experimental results show that the accuracy of two models based on ResNet50 and ViT on the bolt defect classification dataset is 92.3%and 97.4%,which is 2.4%and 5.8%higher than the baseline.The study realizes the cross-modal supplement of semantic information from text to image,which provides a new idea for the research of bolt defect identification.

关键词

输电线路/螺栓缺陷分类/多模态预训练/对比学习/迁移学习

Key words

transmission line/bolt defect classification/multi-modal pre-training/contrastive learning/transfer learning

引用本文复制引用

张珂,郑朝烨,石超君,赵振兵,肖扬杰..基于多模态对比学习的输电线路螺栓缺陷分类[J].高电压技术,2025,51(2):630-641,12.

基金项目

国家自然科学基金(62076093 ()

62206095 ()

61871182) ()

中央高校基本科研业务费专项资金(2023JG002 ()

2022MS078 ()

2023JC006).Project supported by National Natural Science Foundation of China(62076093,62206095,61871182),Fundamental Research Funds for the Central Universities(2023JG002,2022MS078,2023JC006). (62076093,62206095,61871182)

高电压技术

OA北大核心

1003-6520

访问量0
|
下载量0
段落导航相关论文