| 注册
首页|期刊导航|高电压技术|基于YOLO-GSS的输电线路边缘端实时缺陷检测方法

基于YOLO-GSS的输电线路边缘端实时缺陷检测方法

葛召 李洪文 刘海峰 贾志辉 周开峰 邢雨辰

高电压技术2025,Vol.51Issue(2):669-677,9.
高电压技术2025,Vol.51Issue(2):669-677,9.DOI:10.13336/j.1003-6520.hve.20232175

基于YOLO-GSS的输电线路边缘端实时缺陷检测方法

Real-time Defect Detection Method for Edge-end of Transmission Line Based on YOLO-GSS

葛召 1李洪文 1刘海峰 1贾志辉 1周开峰 1邢雨辰1

作者信息

  • 1. 国网雄安新区供电公司,雄安新区 071600
  • 折叠

摘要

Abstract

The combination of edge-end devices and transmission line intelligent inspection can meet the needs of re-al-time defect detection in the field.However,the current research on algorithms for edge-end devices applicable to low-computing-power,low-memory devices is rarely available.Aiming at the above problems,this paper proposes a re-al-time defect detection method based on YOLO-GSS transmission line edge-end.Firstly,Mosaic-9 is used to improve the input end of YOLOv8 network,which improves the number of input features of the algorithm and enhances the robust-ness of the algorithm.Then,GhostNet and S-FPN are introduced to improve the Backbone and Neck part,which improves the inference speed of the algorithm and corrects the accuracy at the same time.Finally,SIoU is used to correct the YOLOv8's CIoU loss function to further improve the detection accuracy of the algorithm.The experimental results show that,compared with the original YOLOv8,the method proposed in this paper can be adopted to realize a quattuor increase in inference speed on Nvidia Jetson NX edge-end devices without too much decrease in accuracy,which can meet the demand for real-time detection of defects on transmission line sites.

关键词

边缘计算/输电线路/缺陷检测/GhostNet/深度学习

Key words

edge compute/transmission line/defect detect/GhostNet/deep learning

引用本文复制引用

葛召,李洪文,刘海峰,贾志辉,周开峰,邢雨辰..基于YOLO-GSS的输电线路边缘端实时缺陷检测方法[J].高电压技术,2025,51(2):669-677,9.

基金项目

国网河北省电力有限公司资助项目(kj2021-015).Project supported by Program of State Grid Hebei Electric Power Company Limited(kj2021-015). (kj2021-015)

高电压技术

OA北大核心

1003-6520

访问量0
|
下载量0
段落导航相关论文