| 注册
首页|期刊导航|南方电网技术|基于关联特征筛选的双层聚类区域配变电压越限特征分析及预测

基于关联特征筛选的双层聚类区域配变电压越限特征分析及预测

郭少东 赵晓莉 孙改平 杨秀 杨帆 刘俊

南方电网技术2025,Vol.19Issue(2):19-27,9.
南方电网技术2025,Vol.19Issue(2):19-27,9.DOI:10.13648/j.cnki.issn1674-0629.2025.02.003

基于关联特征筛选的双层聚类区域配变电压越限特征分析及预测

Analysis and Prediction of Over-Limit Characteristics for Regional Distribution Transformer Voltage Using Bilayer Clustering by Correlation Feature Screening

郭少东 1赵晓莉 1孙改平 1杨秀 1杨帆 2刘俊2

作者信息

  • 1. 上海电力大学电气工程学院,上海 200090
  • 2. 国家电网上海电力科学研究院,上海 200437
  • 折叠

摘要

Abstract

Aiming at the large number of regional distribution transformer,a large number of new loads,distributed photovoltaics,etc.,and the enhancement of the random voltage fluctuation of distribution transformer.The voltage quality of the substation users is facing challenge.In order to better analyze and predict the over-limit characteristics of regional distribution transformer voltage,a bilayer clustering regional distribution transformer voltage prediction method based on correlation feature screening is proposed.Firstly,the number of overrun days of regional distribution transformers are taken as the first layer clustering feature,and the distribu-tion transformers with normal and over-limit voltage properties are obtained.Secondly,for the over-limit voltage distribution transformers,an optimal metric matrix combining Pearson's correlation coefficient and Euclidean distance is proposed to extract the contained information of the original data as the input of K-means to realize the bilayer clustering of regional distribution transformer.On this basis,the representative distribution transformers in the cluster are selected to characterize the distribution transformers of this category,and the convolutional neural network-bidirectional long and short-term memory-attention(CNN-BiLSTM-Attention)model is used to predict the distribution transformer voltage,which can extract the bidirectional information features of the input data,weight the important features,and obtain the bidirectional feature information from multiple time scales for prediction.Finally,the effectiveness of the proposed method is verified in a certain area of Shanghai.

关键词

区域配变/最优度量矩阵/双层聚类/降维/电压预测

Key words

regional distribution/optimal metric matrix/bilayer clustering/dimensionality reduction/voltage prediction

分类

信息技术与安全科学

引用本文复制引用

郭少东,赵晓莉,孙改平,杨秀,杨帆,刘俊..基于关联特征筛选的双层聚类区域配变电压越限特征分析及预测[J].南方电网技术,2025,19(2):19-27,9.

基金项目

国家自然科学基金资助项目(52207121) (52207121)

上海电力人工智能工程技术研究中心项目(19DZ2252800). Supported by the National Natural Science Foundation of China(52207121) (19DZ2252800)

the Project of Shanghai Engineering Research Center of Electric Power Artificial Intelligence(19DZ2252800). (19DZ2252800)

南方电网技术

OA北大核心

1674-0629

访问量0
|
下载量0
段落导航相关论文