| 注册
首页|期刊导航|南方电网技术|基于递归图和预训练迁移学习的电能质量扰动分类

基于递归图和预训练迁移学习的电能质量扰动分类

王继东 王泽平 张迪

南方电网技术2025,Vol.19Issue(2):48-56,114,10.
南方电网技术2025,Vol.19Issue(2):48-56,114,10.DOI:10.13648/j.cnki.issn1674-0629.2025.02.006

基于递归图和预训练迁移学习的电能质量扰动分类

Power Quality Disturbance Classification Based on Recursive Graph and Pre-Trained Transfer Learning

王继东 1王泽平 1张迪2

作者信息

  • 1. 智能电网教育部重点实验室(天津大学),天津 300072
  • 2. 国网沈阳供电公司,沈阳 110000
  • 折叠

摘要

Abstract

Applications of deep learning methods in the classification task of power quality disturbances(PQDs)are becoming increas-ingly popular.Aiming at the limited availability of measured label data compared to the ability to generate simulated data in large batches,a disturbance classification method is proposed based on recursive graph theory and pre-trained transfer learning.Firstly,the PQDs signals are transformed into two-dimensional recursive images using the recursive graph algorithm.Then,a VGG-16 deep learning network is pre-trained using a large amount of simulated data,and the model's weight parameters are saved.Finally,through transfer learning method,the fully connected layer of the model is fine-tuned using a limited amount of measured data,enabling deep feature extraction and classification of PQDs signals under the constraint of limited training samples.Simulation and measured data validation demonstrate that the proposed method achieves high classification accuracy even with limited labeled data.

关键词

电能质量扰动分类/递归图/预训练/迁移学习/时间序列分类/深度学习

Key words

classification of power quality disturbances/recursive graph/pre-trained/transfer learning/time series classification/deep learning

分类

动力与电气工程

引用本文复制引用

王继东,王泽平,张迪..基于递归图和预训练迁移学习的电能质量扰动分类[J].南方电网技术,2025,19(2):48-56,114,10.

基金项目

国家重点研发计划资助项目(2022YFB4200703). Supported by the National Key Research and Development Program of China(2022YFB4200703). (2022YFB4200703)

南方电网技术

OA北大核心

1674-0629

访问量1
|
下载量0
段落导航相关论文