| 注册
首页|期刊导航|实验科学与技术|基于机器学习的衰老基因特征选择与分类

基于机器学习的衰老基因特征选择与分类

曾洁 吴全旺 李德辉 高俊敏

实验科学与技术2025,Vol.23Issue(2):84-89,6.
实验科学与技术2025,Vol.23Issue(2):84-89,6.DOI:10.12179/1672-4550.20230583

基于机器学习的衰老基因特征选择与分类

Machine Learning-Based Aging Gene Feature Selection and Classification

曾洁 1吴全旺 2李德辉 2高俊敏1

作者信息

  • 1. 重庆大学环境与生态学院,重庆 400045
  • 2. 重庆大学计算机学院,重庆 400045
  • 折叠

摘要

Abstract

A machine learning-based aging gene feature selection and classification experiment is designed as the experimental content of the"Machine Learning Basics"course for intelligent medical engineering and other majors.In this experiment,the data set is obtained by mapping aging genes to gene ontology,feature selection methods are used to deal with feature redundancy in gene ontology,and classification models such as naive Bayesian and support vector machines are used to classify aging genes.The experiment is implemented with Python language and Scikit-learn framework.In addition to the built-in methods of the framework,a hierarchical feature selection method based on the statistical properties of the data and the uniqueness of the test sample is designed to eliminate the hierarchical redundancy among features.Experimental results show that effective feature selection methods can significantly improve the results of aging gene classification.

关键词

特征选择/分类/机器学习/衰老基因/基因本体

Key words

feature selection/classification/machine learning/aging genes/gene ontology

分类

信息技术与安全科学

引用本文复制引用

曾洁,吴全旺,李德辉,高俊敏..基于机器学习的衰老基因特征选择与分类[J].实验科学与技术,2025,23(2):84-89,6.

基金项目

国家自然科学基金面上项目(62172065) (62172065)

重庆市教改项目(213029) (213029)

重庆大学教改项目(2021Y34). (2021Y34)

实验科学与技术

1672-4550

访问量0
|
下载量0
段落导航相关论文