| 注册
首页|期刊导航|通信与信息技术|基于改进XGBoost算法的电商平台用户复购行为预测研究

基于改进XGBoost算法的电商平台用户复购行为预测研究

叶昊 袁凯骏 沈伟 郑志强 张宏俊

通信与信息技术Issue(2):11-16,6.
通信与信息技术Issue(2):11-16,6.

基于改进XGBoost算法的电商平台用户复购行为预测研究

Research on repurchase behavior prediction of e-commerce platform users based on improved XGBoost algorithm

叶昊 1袁凯骏 2沈伟 3郑志强 3张宏俊4

作者信息

  • 1. 中博信息技术研究院有限公司,江苏 南京 210012||南京邮电大学现代邮政学院,江苏 南京 210003
  • 2. 博洛尼亚大学工程学院,意大利博洛尼亚 40121
  • 3. 南京邮电大学现代邮政学院,江苏 南京 210003
  • 4. 中国通信服务股份有限公司,北京 100073
  • 折叠

摘要

Abstract

Aiming at the problem of user repurchase prediction of e-commerce platform,this paper proposes a solution based on XG-Boost algorithm.Through in-depth analysis of user behavior data,the key factors affecting repurchase behavior are identified,and logistic regression model and XGBoost model are constructed for comparative analysis.The experimental results show that although the initial XGBoost model performs stably on the test set,the recall rate is low,suggesting that the model has insufficient fitting or data quality prob-lems.Through careful parameter tuning,such as increasing the number of weak learners,adjusting the maximum depth of the tree,and re-ducing the learning rate,the model performance has been significantly improved,the error rate has been reduced from 32.3%to 28.7%,and the accuracy rate has been increased to 71.3%,showing the predictive advantages of XGBoost on complex data sets.Feature impor-tance analysis reveals that the number of times users browse products,the frequency of repeated purchases of the same product and the click-through rate are important features to predict repurchase,while paying attention to the number of brands and the proportion of shop-ping carts have less influence.This paper provides an effective model construction and optimization strategy for Tmall repurchase predic-tion,and provides data-driven decision support for e-commerce platform through feature analysis,which has practical significance for promoting precision marketing and enhancing user stickiness.

关键词

XGBoost算法/复购预测/用户行为分析/数据驱动决策/电子商务

Key words

XGBoost algorithm/Repurchase forecast/User behavior analysis/Data-driven decision-making/E-commerce

分类

计算机与自动化

引用本文复制引用

叶昊,袁凯骏,沈伟,郑志强,张宏俊..基于改进XGBoost算法的电商平台用户复购行为预测研究[J].通信与信息技术,2025,(2):11-16,6.

基金项目

国家自然科学基金(项目编号:61972208)江苏省农业科技创新基金(项目编号:CX(22)1007)江苏省研究生科研与实践创新计划项目(项目编号:KYCX22_1027,KYCX23_1087,SJCX24_0339,SJCX24_0346)南京邮电大学大学生创新训练计划项目(项目编号:XZD2019116,XYB2019331) (项目编号:61972208)

通信与信息技术

1672-0164

访问量0
|
下载量0
段落导航相关论文