| 注册
首页|期刊导航|通信与信息技术|基于改进YOLOv8遥感目标检测算法研究

基于改进YOLOv8遥感目标检测算法研究

张宇阳 姜静 符珊

通信与信息技术Issue(2):36-40,5.
通信与信息技术Issue(2):36-40,5.

基于改进YOLOv8遥感目标检测算法研究

Research on remote sensing target detection algorithm based on improved YOLOv8

张宇阳 1姜静 1符珊1

作者信息

  • 1. 沈阳理工大学自动化与电气工程学院,辽宁 沈阳 110159
  • 折叠

摘要

Abstract

To address the challenges of complex background interference,multi-scale target detection,and poor detection accuracy in remote sensing image target detection,a remote sensing image target detection algorithm based on improved YOLOv8,named CGF-YO-LOv8,was proposed.Initially,the CPAM dual attention module is integrated after the feature extraction network,enabling the model to extract more comprehensive features and more effectively differentiate between target and non-target areas in complex backgrounds.Subsequently,the GFPN enhances detection accuracy for multi-scale targets by effectively combining feature information of different resolutions through cross-scale feature fusion.Finally,utilizing the FIoU anchor box optimization strategy,which assigns different weights to each feature point,not only improves the precision of matching predicted boxes with true boxes but also significantly enhances localization accuracy.Testing on the RSOD dataset demonstrated that this method achieved an average precision of 98.6%,an increase of 6.8%in mAP compared to the original YOLOv8 algorithm,with a frame rate of 250 frames per second(FPS),achieving real-time detection performance.

关键词

遥感图像/目标检测/注意力机制/全局特征融合/锚框优化

Key words

Remote sensing images/Object detection/Attention mechanism/Global feature fusion/Anchor optimization

分类

信息技术与安全科学

引用本文复制引用

张宇阳,姜静,符珊..基于改进YOLOv8遥感目标检测算法研究[J].通信与信息技术,2025,(2):36-40,5.

通信与信息技术

1672-0164

访问量5
|
下载量0
段落导航相关论文