| 注册
首页|期刊导航|医疗卫生装备|基于长短期记忆网络的脑电相位预测方法研究

基于长短期记忆网络的脑电相位预测方法研究

庞紫胭 赵鑫雨 买文姝 赵悦茁 刘志朋 殷涛 靳静娜

医疗卫生装备2025,Vol.46Issue(3):1-8,8.
医疗卫生装备2025,Vol.46Issue(3):1-8,8.DOI:10.19745/j.1003-8868.2025040

基于长短期记忆网络的脑电相位预测方法研究

EEG phase prediction method based on long short-term memory network

庞紫胭 1赵鑫雨 1买文姝 1赵悦茁 1刘志朋 1殷涛 2靳静娜1

作者信息

  • 1. 中国医学科学院北京协和医学院生物医学工程研究所,天津 300192||天津市神经调控与修复重点实验室,天津 300192
  • 2. 中国医学科学院北京协和医学院生物医学工程研究所,天津 300192||天津市神经调控与修复重点实验室,天津 300192||中国医学科学院神经科学中心,北京 100730
  • 折叠

摘要

Abstract

Objective To propose a brain electrical phase prediction method based on long short-term memory network(LSTM)to improve the accuracy and robustness of phase synchronization prediction in transcranial magnetic stimulation(TMS).Methods First,an LSTM consisting of an input layer,an LSTM layer,an ReLU activation layer,a fully connected layer and a regression layer was constructed to capture the EEG signal features through the synergistic action of input gates,forgetting gates and output gates.Second,eye-open resting-state EEG data from 30 healthy subjects were trained using the LSTM to obtain a predictive model for EEG signal and EEG phase prediction.Finally,the LSTM method and the traditional autoregressive(AR)method were compared in terms of the phase prediction errors at the overall and individual levels and the prediction performance for peaks and troughs.A regression model was used to explore the relationships between instantaneous EEG amplitude,signal-to-noise ratio and phase prediction error with the LSTM method.Results The LSTM method achieved a total phase prediction error of 0.04°±5.69°,which was lower than that of the traditional AR method(-3.36°±51.13°).For each subject,the LSTM method demonstrated superior phase prediction accuracy compared to the traditional AR method(P<0.001).The accuracy for predicting peaks(troughs)by the LSTM method(about 89%)was higher than that by the traditional AR method(about 10%).Unlike the traditional AR method,the LSTM method didnot result in linear relationships between instantaneous EEG amplitude,signal-to-noise ratio and phase prediction error,with Pvalues being 0.58 and 0.18,respectively.Conclusion The LSTM-based brain electrical phase prediction method shows high accuracy and robustness when used for EEG phase-synchronized TMS.[Chinese Medical Equipment Journal,2025,46(3):1-8]

关键词

经颅磁刺激/脑电/脑电相位/长短期记忆网络/自回归/脑电信号

Key words

transcranial magnetic stimulation/electroencephalogram/electroencephalogram phase/long short-term memory network/autoregressive/electroencephalogram signal

分类

基础医学

引用本文复制引用

庞紫胭,赵鑫雨,买文姝,赵悦茁,刘志朋,殷涛,靳静娜..基于长短期记忆网络的脑电相位预测方法研究[J].医疗卫生装备,2025,46(3):1-8,8.

基金项目

国家重点研发计划项目(2022YFC2402202,2023YFC2412503) (2022YFC2402202,2023YFC2412503)

医疗卫生装备

1003-8868

访问量0
|
下载量0
段落导航相关论文