| 注册
首页|期刊导航|燕山大学学报|基于时空图神经网络的城市路网行程时间预测研究综述

基于时空图神经网络的城市路网行程时间预测研究综述

董慧 潘晓 郭景峰 陈晓 王书海

燕山大学学报2025,Vol.49Issue(2):95-105,11.
燕山大学学报2025,Vol.49Issue(2):95-105,11.DOI:10.3969/j.issn.1007-791X.2025.02.001

基于时空图神经网络的城市路网行程时间预测研究综述

Review on travel time prediction of urban road network based on spatial-temporal graph neural network

董慧 1潘晓 2郭景峰 3陈晓 4王书海5

作者信息

  • 1. 石家庄铁道大学 管理学院,河北 石家庄 050043
  • 2. 石家庄铁道大学 信息科学与技术学院,河北 石家庄 050043
  • 3. 燕山大学 信息科学与工程学院,河北 秦皇岛 066004
  • 4. 河北省海洋动力过程与资源环境重点实验室,河北 秦皇岛 066004
  • 5. 石家庄铁道大学 科技处,河北 石家庄 050043
  • 折叠

摘要

Abstract

With urbanization accelerating and traffic networks continuously expanding,urban traffic management faces increasingly complex challenges.Accurate travel time prediction is essential for optimizing traffic management,enhancing travel experiences,and advancing smart city development.The travel time of urban road networks exhibits pronounced spatio-temporal dependence and randomness due to the complex network structure,dynamic traffic flow changes,and external factors.Spatio-temporal graph neural networks serve as powerful tools for modeling such complexities,effectively capturing intricate spatial-temporal relationships in urban road networks.Consequently,constructing a travel time prediction framework based on spatio-temporal graph neural networks has emerged as a key research focus in smart transportation.Starting from the key elements of the travel time prediction framework based on spatio-temporal graph neural network,specifically,spatiotemporal information modeling,prediction task selection,and learning paradigm design,the research progress of this type of research in the past three years is introduced.Firstly,the research in this area is summarized from the definition of the problem and the basic framework.Subsequently,based on the different number of prediction task selections in key elements,the related research is categorized into two groups:single-task and multi-task travel time prediction methods.This division is used to explore in detail the unique characteristics and representative works associated with each type of prediction method.Finally,the difficulties in modeling spatio-temporal high-order correlations,implicit spatio-temporal dependencies,and interpretability aspects of travel time prediction are discussed,along with future development trends.

关键词

图神经网络/时空图序列/时空数据挖掘/行程时间预测

Key words

graph neural network/spatio-temporal graph sequence/spatial-temporal data mining/travel time prediction

分类

计算机与自动化

引用本文复制引用

董慧,潘晓,郭景峰,陈晓,王书海..基于时空图神经网络的城市路网行程时间预测研究综述[J].燕山大学学报,2025,49(2):95-105,11.

基金项目

河北省自然科学基金资助项目(F2021210005,F2023407003,F2024210042) (F2021210005,F2023407003,F2024210042)

河北省研究生创新基金项目(CXZZBS2022117) (CXZZBS2022117)

河北省海洋动力过程与资源环境重点实验室开放课题(HBHY02) (HBHY02)

燕山大学学报

OA北大核心

1007-791X

访问量1
|
下载量0
段落导航相关论文