浙江大学学报(理学版)2025,Vol.52Issue(2):226-231,6.DOI:10.3785/j.issn.1008-9497.2025.02.006
在Minkowski空间中平均曲率方程Dirichlet问题正解的存在性和多解性
Existence and multiplicity of positive solutions for Dirichlet problem of mean curvature equation in Minkowski space
摘要
Abstract
The study of particle motion in relativistic state and the Born-Infeld model in nonlinear electrodynamics theory are directly related to a class of Dirichlet problem of mean curvature equation in Minkowski space.In this paper,we use the bifurcation method to study the existence of ε-shaped connected component of positive solutions for such problems,and thus obtain the existence and multiplicity of the corresponding positive solutions.The conclusions generalize and improve the related results of the existing work.关键词
连通分支/平均曲率方程/正解/存在性/多解性Key words
connected component/mean curvature equation/positive solutions/existence/multiplicity分类
数学引用本文复制引用
苗亮英,滕文懿,何志乾..在Minkowski空间中平均曲率方程Dirichlet问题正解的存在性和多解性[J].浙江大学学报(理学版),2025,52(2):226-231,6.基金项目
青海省自然科学基金资助项目(2023-ZJ-949Q) (2023-ZJ-949Q)
国家自然科学基金资助项目(12301631). (12301631)