| 注册
首页|期刊导航|电力建设|基于集成图卷积变分变换器的电力负荷数据补全方法

基于集成图卷积变分变换器的电力负荷数据补全方法

严莉 呼海林 史磊 吴钦政 吕天光 徐英东 张闻彬 王高洲

电力建设2025,Vol.46Issue(4):49-57,9.
电力建设2025,Vol.46Issue(4):49-57,9.DOI:10.12204/j.issn.1000-7229.2025.04.005

基于集成图卷积变分变换器的电力负荷数据补全方法

Power Load Data Completion Method Based on Integrated Graph Convolutional Variational Transformer

严莉 1呼海林 1史磊 2吴钦政 2吕天光 2徐英东 2张闻彬 1王高洲1

作者信息

  • 1. 国网山东省电力公司信息通信公司,济南市 250001
  • 2. 山东大学电气工程学院,济南市 250061
  • 折叠

摘要

Abstract

[Objective]With the development of power systems and continuous expansion of energy systems,massive load power data have been generated.However,missing data are inevitable in the collection and transmission of power data,which greatly restricts the development of system-coordination optimization and advanced data applications.[Methods]To this end,this paper proposes a new power load missing data completion model based on an integrated graph convolutional variational transformer(IGCVT)network.The IGCVT model aggregates an improved graph convolutional network(GCN)and Transformer model using the variational auto-encoder(VAE)architecture.The raw data are processed by the GCN to learn spatial features and deeply mine spatial dependencies;the hidden layer data are reconstructed by the VAE to more effectively restore data distribution characteristics;and the temporal autocorrelation information of the sequence is mined based on the Transformer model.In addition,an improved whale optimization algorithm(WOA)is introduced to optimize the network model hyperparameters and improve the completion accuracy and applicability of the model.Simultaneously,to solve the problem of large errors in the completion of extreme change points of power load data,a two-way data completion method is adopted to make full use of the data information before and after the missing points.[Results]Experimental results show that,compared with the baseline model,the RMSE index is improved by 24.3%,44.0%,and 47.9%,which verifies the superiority of the proposed method.[Conclusions]The results show that the proposed method provides a feasible solution to the problem of missing power load data and is expected to further expand the application scope of the model.

关键词

数据补全/图卷积网络/Transformer模型/电力负荷数据

Key words

data imputation/graph convolutional networks/transformer model/power load data

分类

动力与电气工程

引用本文复制引用

严莉,呼海林,史磊,吴钦政,吕天光,徐英东,张闻彬,王高洲..基于集成图卷积变分变换器的电力负荷数据补全方法[J].电力建设,2025,46(4):49-57,9.

基金项目

国网山东省电力公司科技项目(52062723000A) This work is supported by State Grid Shandong Electric Power Company Research Program(No.52062723000A). (52062723000A)

电力建设

OA北大核心

1000-7229

访问量7
|
下载量0
段落导航相关论文