| 注册
首页|期刊导航|海南医科大学学报|多模态数据融合+动态机器学习构建ICU患者MDRO感染早期预警模型的研究

多模态数据融合+动态机器学习构建ICU患者MDRO感染早期预警模型的研究

左蝶 赵佳 龙晓艳 马学先 刘冰 王小燕 李萍

海南医科大学学报2025,Vol.31Issue(6):421-432,12.
海南医科大学学报2025,Vol.31Issue(6):421-432,12.DOI:10.13210/j.cnki.jhmu.20241113.001

多模态数据融合+动态机器学习构建ICU患者MDRO感染早期预警模型的研究

Study on early warning model of MDRO infection in ICU patients based on multimodal data fusion and dynamic machine learning

左蝶 1赵佳 1龙晓艳 2马学先 3刘冰 3王小燕 3李萍4

作者信息

  • 1. 新疆医科大学护理学院,新疆 乌鲁木齐 830091
  • 2. 中南大学湘雅医院,湖南 长沙 410028
  • 3. 新疆医科大学第二附属医院,新疆 乌鲁木齐 830063
  • 4. 新疆医科大学第二附属医院,新疆 乌鲁木齐 830063||新疆区域人群疾病与健康照护研究中心,新疆 乌鲁木齐 830063
  • 折叠

摘要

Abstract

Objective:To build a risk prediction model of multi-drug resistant organism(MDRO)infection in ICU patients by multi-modal data fusion+dynamic machine learning and to select the optimal prediction model to provide an effective assessment tool for MDRO infection in hospitals.Method:A total of 1 200 patients from ICU of a tertiary hospital from between January 1,2018 and August 30,2023 were randomly divided into a training set(n=960)and a test set(n=240)according to the ratio of 8∶2.Based on univariate analysis,variables with P<0.05 were used as the inclusion factors in the model construction.Random forest(RF),eXtreme Gradient Boosting(XGBoost),classification and regression trees(CART)of the decision tree model,and logis-tic regression were used to establish MDRO infection risk prediction models for ICU patients.Accuracy,sensitivity,specificity,positive predictive value,negative predictive value,Kappa value,AUC value,decision curve,and calibration curve were used to compare the prediction performance of the four models.Results:The RF model performed the best in the training set and test set,and its accuracy,sensitivity,specificity,positive predictive value,negative predictive value,and Kappa value were higher than the other models.AUC values were arranged in order from large to small,in the training set:RF>XGBoost>CRAT>logistic regression and in the test set:RF>CRAT>logistic regression>XGBoost.The results of this study showed that pulmonary infec-tion,cerebrovascular disease,hypoproteinemia,and invasive operation were the risk predictors of the four models,which are im-portant theoretical basis for MDRO infection screening and clinical intervention.Conclusion:The risk prediction model based on RF algorithm is better than the other three machine algorithms in predicting the risk of MDRO infection patients from ICU.

关键词

ICU患者/MDRO感染风险/机器学习/预测模型

Key words

ICU patients/MDRO infection risk/Machine learning/Prediction model

分类

医药卫生

引用本文复制引用

左蝶,赵佳,龙晓艳,马学先,刘冰,王小燕,李萍..多模态数据融合+动态机器学习构建ICU患者MDRO感染早期预警模型的研究[J].海南医科大学学报,2025,31(6):421-432,12.

基金项目

This study was supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region(2023D01C121) 新疆维吾尔自治区自然科学基金(2023D01C121) (2023D01C121)

海南医科大学学报

OA北大核心

1007-1237

访问量5
|
下载量0
段落导航相关论文