基于RK-LS-SVM求常微分方程的近似解OA
Approximate Solution of Ordinary Differential Equations Based on RK-LS-SVM
针对线性常微分方程的初值问题,提出一种将Runge-Kutta法与最小二乘支持向量机(LS-SVM)相结合的RK-LS-SVM方法求近似解.首先通过4阶Runge-Kutta法求出微分方程的数值解,然后将此数值解转化为LS-SVM回归模型的约束条件,进而求解优化问题,所得闭式近似解连续可微,精度较高.数值算例验证了RK-LS-SVM方法的有效性和可行性.
A RK-LS-SVM method combining the Runge-Kutta(RK)method with the least squares support vector machine(LS-SVM)was proposed to approximate the initial value problem of linear ordi-nary differential equations.Firstly,the numerical solution of the differential equation was obtained through the fourth-order Runge-Kutta method.Then,this numerical solution was transformed into the constraint conditions of the LS-SVM regression model,and the optimization problem was solved.The obtained approximate solution in closed form was continuously differentiable with high accuracy.Nu-merical examples have verified the effectiveness and feasibility of this method.
胡蝶;吴俊;肖海霞;黄尚柱
湖北汽车工业学院 数理与光电工程学院,湖北 十堰 442002湖北汽车工业学院 数理与光电工程学院,湖北 十堰 442002湖北汽车工业学院 数理与光电工程学院,湖北 十堰 442002湖北汽车工业学院 数理与光电工程学院,湖北 十堰 442002
数学
Runge-Kutta法LS-SVM线性常微分方程初值问题
Runge-Kutta methodLS-SVMlinear differential equationinitial value problem
《湖北汽车工业学院学报》 2025 (1)
20-22,27,4
应用数学湖北省重点实验室开放基金(HBAM202105)
评论