| 注册
首页|期刊导航|计算机与数字工程|基于U-Net多任务学习的人体分割与关键点检测研究

基于U-Net多任务学习的人体分割与关键点检测研究

刘宇征 佟维妍

计算机与数字工程2025,Vol.53Issue(2):528-534,598,8.
计算机与数字工程2025,Vol.53Issue(2):528-534,598,8.DOI:10.3969/j.issn.1672-9722.2025.02.040

基于U-Net多任务学习的人体分割与关键点检测研究

Research on Body Segmentation and Key Point Detection Based on U-Net Multi-task Learning

刘宇征 1佟维妍1

作者信息

  • 1. 沈阳工业大学化工过程自动化学院 辽阳 111003
  • 折叠

摘要

Abstract

For adolescents with idiopathic scoliosis,conventional testing methods have a low positive predictive value,re-quire radiography,and limit radiation.In recent years,more and more researchers have developed and validated the feasibility and effectiveness of deep learning algorithms in scoliosis detection.The paper proposes a multi-task learning model based on the parallel decoder structure of the U-Net network and enhances the feature extraction capability of the network by improving the convolution module in the network.The model involves two tasks,i.e.,human segmentation and detection of human key points.The design idea of the model is to acquire segmentation models by sharing knowledge between different but related tasks.The paper performs model validation and evaluation using 139 uncovered back images of the human body.The results show that the multi-task model proposed in this paper improves the segmentation intersection ratio by 2.44%over the benchmark U-Net model,improves the ACC by 1.5%over the key point detection task performed alone,and alleviates the training conditions,and enhances the generality of the model.

关键词

深度学习/多任务学习/语义分割/关键点检测

Key words

deep learning/multi-task learning/semantic segmentation/key points detection

分类

信息技术与安全科学

引用本文复制引用

刘宇征,佟维妍..基于U-Net多任务学习的人体分割与关键点检测研究[J].计算机与数字工程,2025,53(2):528-534,598,8.

计算机与数字工程

1672-9722

访问量0
|
下载量0
段落导航相关论文