| 注册
首页|期刊导航|计算机与数字工程|基于迁移学习和微调的抽油机故障识别研究

基于迁移学习和微调的抽油机故障识别研究

李建平 吴江

计算机与数字工程2025,Vol.53Issue(2):558-563,6.
计算机与数字工程2025,Vol.53Issue(2):558-563,6.DOI:10.3969/j.issn.1672-9722.2025.02.045

基于迁移学习和微调的抽油机故障识别研究

Research on Fault Identification of Pumping Unit Based on Transfer Learning and Fine Tuning

李建平 1吴江1

作者信息

  • 1. 东北石油大学计算机与信息技术学院 大庆 163319
  • 折叠

摘要

Abstract

Aiming at the problems that the current fault detection methods on the well of pumping units mainly fail to achieve the real-time effect through manual field detection,and there are few pumping unit data available in the market,this paper propos-es a three-dimensional residual network model based on migration learning and fine tuning,fine tuning and retraining the high-lev-el convolution of the model through a small amount of data.Finally,the algorithm is optimized and implemented through the pytoch deep learning framework.The experimental results show that after 200 iterations,the different models tend to converge,and the pre-cision of the model test results after fine tuning is 20%higher than that of ordinary transfer learning.

关键词

抽油机/深度学习/残差网络/迁移学习/故障识别/微调策略

Key words

pumping unit/deep learning/residual network/transfer learning/fault identification/fine tuning strategy

分类

信息技术与安全科学

引用本文复制引用

李建平,吴江..基于迁移学习和微调的抽油机故障识别研究[J].计算机与数字工程,2025,53(2):558-563,6.

基金项目

国家自然科学基金重点项目(编号:61933007)资助. (编号:61933007)

计算机与数字工程

1672-9722

访问量0
|
下载量0
段落导航相关论文