| 注册
首页|期刊导航|指挥控制与仿真|基于深度学习网络的航迹分层分类研究

基于深度学习网络的航迹分层分类研究

王伊凡 吉琳娜 杨风暴

指挥控制与仿真2025,Vol.47Issue(2):75-86,12.
指挥控制与仿真2025,Vol.47Issue(2):75-86,12.DOI:10.3969/j.issn.1673-3819.2025.02.010

基于深度学习网络的航迹分层分类研究

Research on trajectory hierarchical classification based on deep learning networks

王伊凡 1吉琳娜 1杨风暴1

作者信息

  • 1. 中北大学,山西 太原 030000
  • 折叠

摘要

Abstract

In response to the issue that existing trajectory classification methods fail to fully consider the time series features and spatial structure features of trajectories,leading to a decline in classification accuracy,this paper proposes a trajectory hierarchical classification method based on deep learning networks.First,ship trajectories are transformed into image layers,and a trajectory image layer classification model based on the Swin-Transformer network is constructed.Next,for the trajecto-ry sequence layer,a multi-dimensional information-based trajectory compression algorithm is utilized to optimize the input of trajectory sequences,and a trajectory sequence layer classification model based on the Gained-Transformer-Network deep learning network is developed.At last,a confidence-based fusion layer trajectory classification model is established to im-prove the accuracy of layered trajectory classification.Experimental validation shows an average classification accuracy of 90%,with the performance of the ensemble classifier improving by an average of 11%compared to other single classifiers,and an average F1 score of 0.82.The results indicate that the newly proposed method and the new ensemble classifier dem-onstrate good classification effectiveness for ship trajectories.

关键词

航迹分类/深度学习/Swin-Transformer/Gained-Transformer-Network/分层分类

Key words

trajectory classification/deep learning network/swin-transformer/gained-transformer-network/hierarchical classification

分类

信息技术与安全科学

引用本文复制引用

王伊凡,吉琳娜,杨风暴..基于深度学习网络的航迹分层分类研究[J].指挥控制与仿真,2025,47(2):75-86,12.

指挥控制与仿真

1673-3819

访问量0
|
下载量0
段落导航相关论文