| 注册
首页|期刊导航|水利水电技术(中英文)|快速综合学习粒子群优化算法

快速综合学习粒子群优化算法

杨帆 乌景秀 范子武 李子祥 朱沈涛

水利水电技术(中英文)2025,Vol.56Issue(2):30-44,15.
水利水电技术(中英文)2025,Vol.56Issue(2):30-44,15.DOI:10.13928/j.cnki.wrahe.2025.02.003

快速综合学习粒子群优化算法

Fast comprehensive learning particle swarm optimization

杨帆 1乌景秀 1范子武 1李子祥 1朱沈涛1

作者信息

  • 1. 南京水利科学研究院,江苏南京 210029||水利部太湖流域水治理重点实验室,江苏南京 210029
  • 折叠

摘要

Abstract

[Objective]The particle swarm optimization algorithm is widely used in research fields such as inverse problem solving,function optimization,data mining,and machine learning,but it still faces the problem of premature convergence when solving complex multimodal problems.In order to improve the speed and accuracy of traditional particle swarm optimization in handling complex multimodal problems,this paper proposes the Fast Comprehensive Learning Particle Swarm Optimization algorithm(FCLPSO).[Methods]The FCLPSO algorithm introduces three attributes:learning probability curve,presonal probability,and group influence probability,to characterize the different learning abilities of each individual particle.At the same time,strategies such as reinforcement learning and particle rebirth are added to improve the convergence speed of the algorithm and monitor and jump out of the"pseudo convergence"state.14 standard benchmark test functions and 6 commonly used particle swarm optimization variant algorithms were selected for performance analysis of the FCLPSO algorithm.[Results]The result showed that in terms of convergence,the average ranking of the FCLPSO algorithm was 1.86,with 7 times ranking first,2 times ranking second,and 0 times ranking last and the overall ranking was first;In terms of robustness,the FCLPSO algorithm ranks first with an average success rate of 94.3%,and the lowest success rate among the 14 test functions is 73.3%;The minimum number of fitness evaluations required to reach the threshold is 40817,which is half the number of evaluations compared to other algorithms.[Conclusion]The result indicate that the FCLPSO algorithm ranks first in terms of convergence accuracy,convergence speed,and robustness,and has more advantages in solving complex multimodal problems.It can provide an important means for solving complex optimization problems in engineering applications.

关键词

粒子群优化算法/强化学习/粒子属性/粒子重生/过早收敛/影响因素/人工智能/全局搜索

Key words

particle swarm optimization/reinforcement learning/particle properties/particle reinitialize/premature convergence/influencing factors/artificial intelligence/global search

分类

水利科学

引用本文复制引用

杨帆,乌景秀,范子武,李子祥,朱沈涛..快速综合学习粒子群优化算法[J].水利水电技术(中英文),2025,56(2):30-44,15.

基金项目

国家重点研发计划项目(2022YFC320260303) (2022YFC320260303)

广西科技重大专项项目(桂科AA23062053-2) (桂科AA23062053-2)

江苏省水利科技项目(2022049,2023008) (2022049,2023008)

中央级公益性科研院所基本科研业务费专项项目(Y124002) (Y124002)

水利水电技术(中英文)

OA北大核心

1000-0860

访问量0
|
下载量0
段落导航相关论文