| 注册
首页|期刊导航|石油物探|基于多尺度注意力UNet++的地震层位识别方法

基于多尺度注意力UNet++的地震层位识别方法

杨润湉 马强 王志宝 李菲 吴钧 王如意

石油物探2025,Vol.64Issue(2):315-327,13.
石油物探2025,Vol.64Issue(2):315-327,13.DOI:10.12431/issn.1000-1441.2023.0426

基于多尺度注意力UNet++的地震层位识别方法

A seismic horizon identification method based on multi-scale attention UNet++

杨润湉 1马强 2王志宝 1李菲 2吴钧 3王如意4

作者信息

  • 1. 东北石油大学计算机与信息技术学院,黑龙江 大庆 163318
  • 2. 黑龙江八一农垦大学信息与电气工程学院,黑龙江 大庆 163319
  • 3. 中国石油大庆油田有限责任公司勘探开发研究院,黑龙江 大庆 163712
  • 4. 中国石油集团工程技术研究院有限公司,北京 102206
  • 折叠

摘要

Abstract

Common horizon identification methods based on deep learning primarily focus on seismic amplitude without sufficient attention to the spatial relationship among horizons of different scales,resulting in discontinuous and even inaccurate interpretation.To address this problem,we propose a method based on the multi-scale attention UNet++,termed MR_CBAM_UNet++,which involves MultiResBlock to extract a broader spectrum of horizon scale features,CBAM to reduce the amplitude interference of non-target signals,and a UNet++.A joint loss function composed of Focal Loss and Dice Loss is utilized for network training,and the uniqueness constraint is incorporated to refine the results of horizon identification.According to its application to actual seismic data,the MR_CBAM_UNet++model shows significantly improved capabilities compared to traditional models in suppressing non-horizon information and identifying horizons in complex subsurface conditions.A mean pixel accuracy rate of 86.19%is achieved for the test dataset,indicating more accurate horizon interpretation with better continuity.Additionally,the results of horizon identification are more geologically significant by using the uniqueness constraint.

关键词

地震层位解释/UNet++/CBAM注意力模块/MultiResBlock多尺度残差模块/联合损失函数

Key words

seismic horizon interpretation/UNet++/CBAM/MultiResBlock/joint loss function

分类

地质学

引用本文复制引用

杨润湉,马强,王志宝,李菲,吴钧,王如意..基于多尺度注意力UNet++的地震层位识别方法[J].石油物探,2025,64(2):315-327,13.

基金项目

黑龙江省揭榜挂帅科技攻关项目(DQYT-2022-JS-750)、中国石油天然气集团有限公司重大科技专项(2021ZZ10-05)和黑龙江八一农垦大学自然科学人才支持计划(ZRCQC202310)共同资助. This research is financially supported by the Heilongjiang Provincial Science and Technology Tackling Project(Grant No.DQYT-2022-JS-750),China National Petroleum Corporation Major Science and Technology Project(Grant No.2021ZZ10-05),Natural Science Talent Support Program of Heilongjiang Bayi Agricultural University(Grant No.ZRCQC202310). (DQYT-2022-JS-750)

石油物探

OA北大核心

1000-1441

访问量0
|
下载量0
段落导航相关论文