| 注册
首页|期刊导航|现代信息科技|基于CNN-LSTM的油田产量预测模型

基于CNN-LSTM的油田产量预测模型

张汉文 辛显康 喻高明

现代信息科技2025,Vol.9Issue(5):33-38,6.
现代信息科技2025,Vol.9Issue(5):33-38,6.DOI:10.19850/j.cnki.2096-4706.2025.05.006

基于CNN-LSTM的油田产量预测模型

Oilfield Production Forecasting Model Based on CNN-LSTM

张汉文 1辛显康 2喻高明2

作者信息

  • 1. 长江大学 石油工程学院,湖北 武汉 430100
  • 2. 长江大学 石油工程学院,湖北 武汉 430100||长江大学 油气钻采工程湖北省重点实验室,湖北 武汉 430100||长江大学 油气钻完井技术国家工程研究中心,湖北 武汉 430100
  • 折叠

摘要

Abstract

Oilfield production forecasting is a fundamental task for formulating production and development scheme.With the increasing volume of data,traditional methods face significant challenges.Establishing forecasting models through Machine Learning has become a more accurate and efficient method.This paper combines two fundamental models,Convolutional Neural Networks(CNN)and Long Short-Term Memory(LSTM),to construct a CNN-LSTM model.It extracts some prominent features from the oilfield data by CNN,and uses the features as input to construct the LSTM time series dataset.It reveals the hidden relationship between features and spatial interaction in data,and then enhances the accuracy of the forecasting results.In addition,the experiment results demonstrate that compared with standalone LSTM model and CNN model,the CNN-LSTM model has significant advantages in terms of forecasting performance.It can forecast the oilfield production data more accurately and provide reliable data support for the subsequent oilfield development.

关键词

CNN-LSTM/机器学习/产量预测

Key words

CNN-LSTM/Machine Learning/production forecasting

分类

计算机与自动化

引用本文复制引用

张汉文,辛显康,喻高明..基于CNN-LSTM的油田产量预测模型[J].现代信息科技,2025,9(5):33-38,6.

基金项目

国家自然科学基金青年科学基金(52104020) (52104020)

现代信息科技

2096-4706

访问量0
|
下载量0
段落导航相关论文