| 注册
首页|期刊导航|现代信息科技|基于L1/2稀疏性和峰度平滑约束非负矩阵分解的高光谱图像解混

基于L1/2稀疏性和峰度平滑约束非负矩阵分解的高光谱图像解混

杨国亮 张佳琦 盛杨杨

现代信息科技2025,Vol.9Issue(5):45-50,6.
现代信息科技2025,Vol.9Issue(5):45-50,6.DOI:10.19850/j.cnki.2096-4706.2025.05.008

基于L1/2稀疏性和峰度平滑约束非负矩阵分解的高光谱图像解混

HU Based on L1/2 Sparsity and Kurtosis Smoothing Constrained Non-negative Matrix Factorization

杨国亮 1张佳琦 1盛杨杨1

作者信息

  • 1. 江西理工大学 电气工程与自动化学院,江西 赣州 341000
  • 折叠

摘要

Abstract

In order to solve the problems existing in traditional HU methods,such as low unmixing efficiency,complex computation and vulnerability to noise and outliers,an algorithm based on L1/2-KSNMF is proposed.Aiming at nonlinear mixing situation in HSI,this method first introduces the L1/2 norm as a measure of sparsity to improve the accuracy of unmixing.By introducing kurtosis smoothing constraint,the spatial information is fused into the unmixing model to enhance the spatial continuity of the unmixing results.The experimental results show that this algorithm demonstrates excellent performance in terms of unmixing accuracy,computational efficiency,as well as the extraction of endmember spectra from hyperspectral data.

关键词

高光谱图像/非负矩阵分解/L1/2稀疏约束/高光谱图像解混(HU)

Key words

HSI/Non-negative Matrix Factorization/L1/2 sparse constraint/HU

分类

计算机与自动化

引用本文复制引用

杨国亮,张佳琦,盛杨杨..基于L1/2稀疏性和峰度平滑约束非负矩阵分解的高光谱图像解混[J].现代信息科技,2025,9(5):45-50,6.

基金项目

江西省教育厅科技计划项目(GJJ210861) (GJJ210861)

江西省教育厅科技项目(GJJ200879) (GJJ200879)

现代信息科技

2096-4706

访问量0
|
下载量0
段落导航相关论文