| 注册
首页|期刊导航|信息安全研究|基于行为聚类的LSTM-NN模型恶意行为检测方法

基于行为聚类的LSTM-NN模型恶意行为检测方法

付安棋 李剑

信息安全研究2025,Vol.11Issue(4):343-350,8.
信息安全研究2025,Vol.11Issue(4):343-350,8.DOI:10.12379/j.issn.2096-1057.2025.04.07

基于行为聚类的LSTM-NN模型恶意行为检测方法

Malicious Behavior Detection Method Based on Behavior Clustering LSTM-NN

付安棋 1李剑1

作者信息

  • 1. 北京邮电大学网络空间安全学院 北京 100876
  • 折叠

摘要

Abstract

With the progress and development of society,the safety requirements for public places have further increased.Malicious behavior detection can monitor and identify potential safety hazards in real time.To solve this problem,the K-means clustering method is used to divide the molecular data set and distinguish different forms of malicious behavior.To solve this problem,the K-means clustering method is used to divide the sub-datasets to distinguish different forms of malicious behaviors.The DTW time warping method solves the problem of inconsistent lengths of malicious behavior time series.In order to solve the problem of image recognition,the excessive amount of data in the malicious behavior frame set makes the model calculation accuracy low,and the Attention mechanism is used to focus on special information points to ensure the accuracy of model training.This method was applied to the malicious behavior data set of UBI-Fights.The results showed that the final classification accuracy of the sub-dataset after clustering division by weighted average calculation reached 95.03%.This model effectively identifies malicious behavior videos and improves safety.

关键词

恶意行为检测/聚类方法/LSTM分类/注意力机制/DTW算法

Key words

malicious behavior detection/clustering methods/LSTM classification/attention mechanism/dynamic time warping

分类

计算机与自动化

引用本文复制引用

付安棋,李剑..基于行为聚类的LSTM-NN模型恶意行为检测方法[J].信息安全研究,2025,11(4):343-350,8.

信息安全研究

OA北大核心

2096-1057

访问量0
|
下载量0
段落导航相关论文