| 注册
首页|期刊导航|信息安全研究|结合序列关联图与GAN的高可用时序数据生成方法

结合序列关联图与GAN的高可用时序数据生成方法

万韵伟 程瑶 门元昊

信息安全研究2025,Vol.11Issue(4):351-357,7.
信息安全研究2025,Vol.11Issue(4):351-357,7.DOI:10.12379/j.issn.2096-1057.2025.04.08

结合序列关联图与GAN的高可用时序数据生成方法

High-utility Time Series Data Generation Method Combining Sequence Correlation Graph and GAN

万韵伟 1程瑶 1门元昊1

作者信息

  • 1. 北京理工大学信息与电子学院 北京 100081
  • 折叠

摘要

Abstract

Long-term time series data is difficult to obtain in reality,which seriously restricts the development of applications such as situational awareness and threat analysis in cyberspace security.Deep learning-driven data generation methods can effectively protect the privacy of original data,where ensuring the high utility and diversity of generated data is crucial.However,existing methods used random splicing of short-term data to construct training data,which cannot ensure that the distribution of generated data meets expectations,affecting the availability of generated data.To address the above problems,this paper proposes a high-utility time series generation method combining sequence correlation graph and generative adversarial network.By constructing sequence correlation graph and probability weighted generative adversarial network,the original data distribution is accurately fitted.Experimental results on multiple real data sets show that the method can generate long-term time series data with high utility and diversity based on short-term original data,showing its great potential in practical applications.

关键词

数据生成/数据安全/时序数据/短序列/生成对抗网络

Key words

data generation/data security/time series data/short sequence/GAN(generative adversarial network)

分类

计算机与自动化

引用本文复制引用

万韵伟,程瑶,门元昊..结合序列关联图与GAN的高可用时序数据生成方法[J].信息安全研究,2025,11(4):351-357,7.

基金项目

国家242信息安全计划项目(2020A065) (2020A065)

信息安全研究

OA北大核心

2096-1057

访问量0
|
下载量0
段落导航相关论文