| 注册
首页|期刊导航|中山大学学报(自然科学版)(中英文)|基于机器学习的环境因子与土壤孔隙度模拟

基于机器学习的环境因子与土壤孔隙度模拟

胡炎凤 邹天祥 梁志鹏 涂俊喜 周萌 沈文杰 张介棠 范东升 卢燕回

中山大学学报(自然科学版)(中英文)2025,Vol.64Issue(2):33-41,9.
中山大学学报(自然科学版)(中英文)2025,Vol.64Issue(2):33-41,9.DOI:10.13471/j.cnki.acta.snus.ZR20240201

基于机器学习的环境因子与土壤孔隙度模拟

Simulation of environmental factors and soil porosity based on Machine Learning:A case study of tobacco-growing soils in Baise,Guangxi

胡炎凤 1邹天祥 1梁志鹏 1涂俊喜 1周萌 1沈文杰 2张介棠 3范东升 4卢燕回4

作者信息

  • 1. 中山大学地球科学与工程学院,广东 珠海 519000
  • 2. 中山大学地球科学与工程学院,广东 珠海 519000||广东省地质过程与矿产资源探查重点实验室/广东省地球动力作用与地质灾害重点实验室,广东 珠海 519000
  • 3. 广东微碳检测科技有限公司,广东 清远 511500
  • 4. 中国烟草总公司广西壮族自治区公司,广西 南宁 530022
  • 折叠

摘要

Abstract

Soil porosity is a crucial parameter in the study of soil physical quality,agriculture,and environmental protection.This research focuses on the 0-20 cm surface soil of tobacco planting in Baise,Guangxi Province.Four machine learning models were employed to simulate the predictive potential of six climatic factors,three topographic factors,and one soil attribute factor on soil porosity.The study also analyzed the magnitude and spatial distribution characteristics of porosity.The findings reveal that the Random Forest model is the most effective,achieving a mean porosity prediction value of 41.257%,the lowest root mean square error of 5.738,and the highest coefficient of determination of 0.648.The predicted results closely align with the measured values,indicating that the Random Forest model demonstrates strong generalization performance and effective predictive capabilities for simulating environmental factors and soil porosity.Meanwhile,results from Kriging interpolation indicate that the porosity values in Debao County and Jingxi City areas are generally low.This suggests potential land degradation issues,such as land slumping,compaction,and a reduction of soil organic carbon storage.These problems could be mitigated through restoration measures such as selective operation,the reasonable application of organic fertilizer,and deep plowing,which would help promote tobacco productivity in the study area.Overall,this study provides an effective method for predicting regional soil porosity and offers a valuable reference for understanding the characteristics of soil porosity in tobacco-growing regions across the country,as well as for developing land degradation management strategies.

关键词

土壤孔隙度/气候因子/地形因子/土壤属性因子/随机森林模型

Key words

soil porosity/climate factors/topographic factors/soil property factors/random forest model

分类

农业科技

引用本文复制引用

胡炎凤,邹天祥,梁志鹏,涂俊喜,周萌,沈文杰,张介棠,范东升,卢燕回..基于机器学习的环境因子与土壤孔隙度模拟[J].中山大学学报(自然科学版)(中英文),2025,64(2):33-41,9.

基金项目

国家自然科学基金-广东联合基金(U1911202) (U1911202)

国家重点研发计划(2022YFF0801201) (2022YFF0801201)

广东省科技计划项目(2020B1111370001) (2020B1111370001)

中山大学学报(自然科学版)(中英文)

OA北大核心

0529-6579

访问量0
|
下载量0
段落导航相关论文