| 注册
首页|期刊导航|重型机械|基于支持向量机的汽轮机透平材料持久寿命评估

基于支持向量机的汽轮机透平材料持久寿命评估

禹争光 江雷 张晓林 曹海 杨吉辉

重型机械Issue(1):56-60,5.
重型机械Issue(1):56-60,5.

基于支持向量机的汽轮机透平材料持久寿命评估

Rupture life evaluation of material for steam turbine based on support vector machine

禹争光 1江雷 1张晓林 1曹海 1杨吉辉1

作者信息

  • 1. 东方电气集团东方汽轮机有限公司 清洁高效透平动力装备全国重点实验室,四川 德阳 618000
  • 折叠

摘要

Abstract

To solve the rupture life evaluation for steam turbine materials,a machine learning method based on support vector machine(SVM)is introduced,following by test data pretreatment and feature optimization.In this paper,by testing of various mechanical and durability on a large number of C422 materials,a sample durability correlation dataset was obtained.Through data preprocessing,introduction of feature dimensionality,feature and density analysis,a support vector classification model was established to partition the durability life of the material samples.The results show that the learned SVM model has accuracy,precision,and recall rates of 87.8%,88.9%,and 97.0%,respectively.Which is roughly 9.1%higher compared with the K-nearest neighbor algorithm accuracy.Furthermore,the SVM model provides a potential method for diagnosis of material rapture life.

关键词

持久寿命评估/支持向量机/特征优化

Key words

rupture life evaluation/support vector machine/feature optimization

分类

金属材料

引用本文复制引用

禹争光,江雷,张晓林,曹海,杨吉辉..基于支持向量机的汽轮机透平材料持久寿命评估[J].重型机械,2025,(1):56-60,5.

重型机械

1001-196X

访问量0
|
下载量0
段落导航相关论文