| 注册
首页|期刊导航|地质与勘探|基于随机森林算法的川西木绒锂矿区及外围地电化学技术找矿预测

基于随机森林算法的川西木绒锂矿区及外围地电化学技术找矿预测

甘盟 刘攀峰 岳大斌 文美兰 高文 邓鹏 陈若 叶伟

地质与勘探2025,Vol.61Issue(2):359-370,12.
地质与勘探2025,Vol.61Issue(2):359-370,12.DOI:10.12134/j.dzykt.2025.02.012

基于随机森林算法的川西木绒锂矿区及外围地电化学技术找矿预测

Geoelectrochemical Prospecting Prediction in the Murong Lithium Deposit and Its Periphery in Western Sichuan Province Based on the Random Forest Algorithm

甘盟 1刘攀峰 1岳大斌 2文美兰 1高文 1邓鹏 1陈若 1叶伟1

作者信息

  • 1. 桂林理工大学地球科学学院,广西 桂林 541006||桂林理工大学,有色金属矿产勘查与资源高效利用省部共建协同创新中心,广西 桂林 541006||广西隐伏金属矿产勘查重点实验室,广西 桂林 541006
  • 2. 四川省第三地质大队,四川 成都 610000
  • 折叠

摘要

Abstract

The random forest algorithm has the advantages of being able to handle high-dimensional data and missing values,and possesses a great prediction effect on small training sample sets,making it very suitable for data processing related to exploration geochemistry.This work took the Murong lithium deposit in western Sichuan and its periphery as the research object,and utilized the random forest algorithm to construct a prospecting model of this deposit.We selected the element Li,the strongly correlated elements Rb,Cs,Th,and the element combination F1(Li-Rb-Cs-Th)collected by the geoelectrochemical technology in the known area as training indicators to train the model.The best random forest model for this deposit was constructed,and the sample data in the prediction area were predicted.After multiple trainings of the model,the AUC values of the training set and the test set in the known area were both greater than 80%.The model was then applied to the prediction area,and successfully delineated two target areas.To verify the accuracy of the target areas,the single-element anomalies of Li,Rb,Cs,and Th and the element combination F1(Li-Rb-Cs-Th)were compared.The obtained comprehensive anomaly area is consistent with the location of the model target area,indicative of a high accuracy rate of the prediction model by the random forest algorithm.This study provides a new prospecting direction for the exploration work of the Murong lithium deposit in western Sichuan.

关键词

地电化学/随机森林模型/找矿预测/木绒锂矿/川西

Key words

geoelectrochemistry/random forest model/prospecting prediction/Murong lithium deposit/western Sichuan Province

分类

地质学

引用本文复制引用

甘盟,刘攀峰,岳大斌,文美兰,高文,邓鹏,陈若,叶伟..基于随机森林算法的川西木绒锂矿区及外围地电化学技术找矿预测[J].地质与勘探,2025,61(2):359-370,12.

基金项目

深地国家科技重大专项(编号2024ZD1001503)、国家自然科学基金(编号:42203067)和广西高校中青年教师科研基础能力提升项目(编号:2023KY0258)联合资助. (编号2024ZD1001503)

地质与勘探

OA北大核心

0495-5331

访问量0
|
下载量0
段落导航相关论文