| 注册
首页|期刊导航|计算机工程与科学|基于监督学习的稀疏矩阵乘算法优选

基于监督学习的稀疏矩阵乘算法优选

彭林 张鹏 陈俊峰 唐滔 黄春

计算机工程与科学2025,Vol.47Issue(3):381-391,11.
计算机工程与科学2025,Vol.47Issue(3):381-391,11.DOI:10.3969/j.issn.1007-130X.2025.03.001

基于监督学习的稀疏矩阵乘算法优选

Selection of sparse matrix multiplication algorithms based on supervised learning

彭林 1张鹏 1陈俊峰 1唐滔 1黄春1

作者信息

  • 1. 国防科技大学计算机学院,湖南长沙 410073
  • 折叠

摘要

Abstract

The sparse matrix multiplication algorithms with mainstream row-by-row calculation for-mulas,including SPA,HASH,and ESC,have significant performance disparities in different sparse matrices.There is no single optimal algorithm for all sparse matrices.A single algorithm cannot always achieve optimal performance on different non-zero element scales,and there is a significant gap between a single algorithm and the optimal selection.To this end,a selection model of sparse matrix multiplica-tion algorithm based on supervised learning is proposed.A given set of matrices is used as the data source to extract the features of the sparse matrices,and performance data is obtained using SPA,HASH,and ESC calculations for training and validation.The resulting model can select the optimal algorithm for a new dataset solely based on the features of the sparse matrix.The experimental results show that this model can achieve a prediction accuracy of over 91%,with an average performance of 98%of the optimal selection,which is more than 1.55 times the performance of a single algorithm.It can also be used in practical library functions and has good generalization ability and practical value.

关键词

稀疏矩阵乘/SpGEMM/SPA算法/HASH算法/ESC算法/机器学习

Key words

sparse matrix multiplication/SpGEMM/SPA algorithm/HASH algorithm/ESC algo-rithm/machine learning

分类

计算机与自动化

引用本文复制引用

彭林,张鹏,陈俊峰,唐滔,黄春..基于监督学习的稀疏矩阵乘算法优选[J].计算机工程与科学,2025,47(3):381-391,11.

基金项目

国家重点研发计划(2020YFA0709803) (2020YFA0709803)

计算机工程与科学

OA北大核心

1007-130X

访问量0
|
下载量0
段落导航相关论文