| 注册
首页|期刊导航|计算机工程与科学|基于Transformer和Text-CNN的日志异常检测

基于Transformer和Text-CNN的日志异常检测

尹春勇 张小虎

计算机工程与科学2025,Vol.47Issue(3):448-458,11.
计算机工程与科学2025,Vol.47Issue(3):448-458,11.DOI:10.3969/j.issn.1007-130X.2025.03.007

基于Transformer和Text-CNN的日志异常检测

Log anomaly detection based on Transformer and Text-CNN

尹春勇 1张小虎1

作者信息

  • 1. 南京信息工程大学计算机学院、网络空间安全学院,江苏南京 210044
  • 折叠

摘要

Abstract

Log data,as one of the most important data resources in software systems,records de-tailed information during system operation,and automated log anomaly detection is crucial for maintain-ing system security.With the widespread application of large language models in the field of natural language processing,Transformer-based log anomaly detection methods have been widely proposed.Traditional Transformer-based methods struggle to capture the local features of log sequences.To ad-dress this issue,this paper proposes a log anomaly detection method,LogTC,based on Transformer and Text-CNN.Firstly,logs are converted into structured log data through rule matching,while pre-serving the effective information in log statements.Secondly,log statements are divided into log se-quences using fixed windows or session windows according to log characteristics.Thirdly,natural lan-guage processing technology,specifically Sentence-BERT,is used to generate semantic representations of log statements.Finally,the semantic vectors of the log sequences are input into the LogTC log anom-aly detection model for detection.Experimental results show that LogTC can effectively detect anoma-lies in log data and achieves good results on two datasets.

关键词

日志异常检测/深度学习/词嵌入/Transformer/Text-CNN

Key words

log anomaly detection/deep learning/word embedding/Transformer/Text-CNN

分类

计算机与自动化

引用本文复制引用

尹春勇,张小虎..基于Transformer和Text-CNN的日志异常检测[J].计算机工程与科学,2025,47(3):448-458,11.

计算机工程与科学

OA北大核心

1007-130X

访问量0
|
下载量0
段落导航相关论文