| 注册
首页|期刊导航|工矿自动化|基于改进YOLOv5的矿山遥感图像去噪方法

基于改进YOLOv5的矿山遥感图像去噪方法

裴丹 房坤 庆宇东 陈沛

工矿自动化2025,Vol.51Issue(3):148-155,8.
工矿自动化2025,Vol.51Issue(3):148-155,8.DOI:10.13272/j.issn.1671-251x.2024110095

基于改进YOLOv5的矿山遥感图像去噪方法

Mine remote sensing image denoising method based on improved YOLOv5

裴丹 1房坤 2庆宇东 3陈沛4

作者信息

  • 1. 洛阳职业技术学院信息工程学院,河南洛阳 471000
  • 2. 洛阳船舶材料研究所,河南洛阳 471000
  • 3. 中国航空工业集团公司洛阳电光设备研究所,河南洛阳 471000
  • 4. 北京航空航天大学可靠性与系统工程学院,北京 100191
  • 折叠

摘要

Abstract

The images of typical open-pit mining scenarios exhibit multi-type composite noise characteristics,with a low signal-to-noise ratio and significant spatial heterogeneity.Most existing deep learning models directly transfer denoising architectures from natural images,ignoring the unique noise distribution patterns of mining remote sensing images.To address the issue,a mine remote sensing image denoising method based on improved YOLOv5 was proposed.Considering the instability of traditional YOLOv5 in high-noise environments,a multi-scale feature fusion module was introduced to enhance the model's ability to recognize noise of different sizes.Additionally,a residual attention mechanism was incorporated to improve the extraction of useful features and enhance the robustness of the denoising effect.An adaptive noise estimation technique was employed to dynamically adjust denoising parameters based on the noise characteristics of different image regions,achieving more precise noise suppression.The experimental results showed that the improved YOLOv5 significantly outperformed other classical denoising methods in terms of peak signal-to-noise ratio(PSNR)and structural similarity index measure(SSIM).Compared to the original YOLOv5,the PSNR value increased by 2.5 dB,and the SSIM improved by 0.05.The improved YOLOv5 performed well under all noise types,especially in Gaussian noise environments,where its PSNR and SSIM reached 32.5 dB and 0.95,respectively,significantly surpassing other classical denoising methods.

关键词

矿山遥感图像去噪/YOLOv5/多尺度特征融合/残差注意力机制/自适应噪声估计

Key words

mine remote sensing image denoising/YOLOv5/multi-scale feature fusion/residual attention mechanism/adaptive noise estimation

分类

矿业与冶金

引用本文复制引用

裴丹,房坤,庆宇东,陈沛..基于改进YOLOv5的矿山遥感图像去噪方法[J].工矿自动化,2025,51(3):148-155,8.

基金项目

2022年河南省教育厅高校重点项目(22B520023). (22B520023)

工矿自动化

OA北大核心

1671-251X

访问量4
|
下载量0
段落导航相关论文