| 注册
首页|期刊导航|软件导刊|基于改进VirConv算法的点云三维目标检测

基于改进VirConv算法的点云三维目标检测

梁凯 徐义春 董方敏 孙水发

软件导刊2025,Vol.24Issue(3):170-176,7.
软件导刊2025,Vol.24Issue(3):170-176,7.DOI:10.11907/rjdk.241954

基于改进VirConv算法的点云三维目标检测

Point Cloud 3D Object Detection Based on Improved VirConv Algorithm

梁凯 1徐义春 2董方敏 1孙水发3

作者信息

  • 1. 三峡大学 计算机与信息学院||三峡大学 湖北省水电工程智能视觉监测重点实验室,湖北 宜昌 443002
  • 2. 三峡大学 计算机与信息学院
  • 3. 杭州师范大学 信息科学与技术学院,浙江 杭州 310036
  • 折叠

摘要

Abstract

To address the challenges of high false detection rates and poor performance in detecting distant and small objects in current point cloud 3D object detection algorithms,this paper proposes an improved 3D object detection method based on the VirConv algorithm.We design a Bird's Eye View(BEV)feature extraction network called C-ECVNet,which optimizes the point cloud encoding network of VirConv.This network introduces the ECVBlock module to enhance object features,enabling more precise extraction of spatial structure information from the original point cloud.Additionally,it incorporates a channel self-attention mechanism to capture hierarchical attention between channels,thereby improving model efficiency and generalization ability,while enhancing feature extraction capabilities.Experimental results on the KIT-TI test set demonstrate that our algorithm exhibits stronger robustness and lower false detection rates when processing complex environments,distant targets,and small objects.

关键词

点云/三维目标检测/VirConv/特征增强

Key words

point cloud/3D object detection/VirConv/feature enhancement

分类

信息技术与安全科学

引用本文复制引用

梁凯,徐义春,董方敏,孙水发..基于改进VirConv算法的点云三维目标检测[J].软件导刊,2025,24(3):170-176,7.

基金项目

国家自然科学基金项目(61871258) (61871258)

软件导刊

1672-7800

访问量9
|
下载量0
段落导航相关论文