| 注册
首页|期刊导航|南昌工程学院学报|暗通道先验优化的生成对抗网络图像去雾算法

暗通道先验优化的生成对抗网络图像去雾算法

苏腾华 吕莉 樊棠怀 谢海华 刘宝宏

南昌工程学院学报2025,Vol.44Issue(1):81-90,10.
南昌工程学院学报2025,Vol.44Issue(1):81-90,10.

暗通道先验优化的生成对抗网络图像去雾算法

Generative adversarial network image dehazing algorithm with a dark channel priori optimization

苏腾华 1吕莉 2樊棠怀 2谢海华 2刘宝宏2

作者信息

  • 1. 南昌工程学院信息工程学院,江西南昌 330099
  • 2. 南昌工程学院信息工程学院,江西南昌 330099||南昌工程学院南昌市智慧城市物联感知与协同计算重点实验室,江西南昌 330099
  • 折叠

摘要

Abstract

In order to solve the problems of dehazing image distortion,loss of detail and poor generalization of traditional im-age dehazing methods,this paper proposes a generative adversarial network image dehazing algorithm with a dark channel prior optimization.Firstly,a new model framework is designed,which generates an adversarial network through a priori opti-mization of dark channels,and the physical model is used to improve the convergence performance.Secondly,the residual auto-encoding is used to form a generator network,and the residual block is formed by jumping connections to retain the im-age detail information.Finally,the Markov discriminator was introduced to discriminate the dehazing image and fed back to the generator to further enhance the dehazing effect of the model.Experimental results show that the algorithm can effectively remove the fog layer in the foggy image,restore the image details well,ensure high visual quality,and perform well in a vari-ety of dehazing scenarios.

关键词

图像去雾/生成对抗网络/暗通道先验/残差自编码/马尔可夫判别器

Key words

image dehazing/generative adversarial networks/dark channel prior/residuals auto-encoded/Markov discrimina-tor

分类

信息技术与安全科学

引用本文复制引用

苏腾华,吕莉,樊棠怀,谢海华,刘宝宏..暗通道先验优化的生成对抗网络图像去雾算法[J].南昌工程学院学报,2025,44(1):81-90,10.

基金项目

国家自然科学基金资助项目(62463021) (62463021)

南昌工程学院学报

1674-0076

访问量10
|
下载量0
段落导航相关论文