| 注册
首页|期刊导航|热带亚热带植物学报|基于卷积神经网络的尾巨桉混交林胸径-树高模型

基于卷积神经网络的尾巨桉混交林胸径-树高模型

任一平 杨梅 任世奇 朱慧 韦振道 伍琪

热带亚热带植物学报2025,Vol.33Issue(2):140-148,9.
热带亚热带植物学报2025,Vol.33Issue(2):140-148,9.DOI:10.11926/jtsb.4877

基于卷积神经网络的尾巨桉混交林胸径-树高模型

Breast Diameter-height Models of Eucalyptus urophylla×E.grandis Mixed Plantations Based on Convolutional Neural Network

任一平 1杨梅 2任世奇 3朱慧 3韦振道 3伍琪3

作者信息

  • 1. 广西大学林学院,南宁 530000||广西壮族自治区林业科学研究院,南宁桉树森林生态系统广西野外科学观测研究站,南宁 530000
  • 2. 广西大学林学院,南宁 530000
  • 3. 广西壮族自治区林业科学研究院,南宁桉树森林生态系统广西野外科学观测研究站,南宁 530000
  • 折叠

摘要

Abstract

The study aimed to predict the tree height of large-diameter mixed plantations of Eucalyptus urophylla×E.grandis using convolutional neural networks(CNN)and provide a theoretical basis for forest resource monitoring and evaluation.The research focused on 24 plots of mixed plantations of Eucalyptus urophylla×E.grandis intercropped with Mytilaria laosensis,Castanopsis hystrix,Manglietia glauca,and Michelia macclure at the Nanning Eucalyptus Field Station.By combining the information of dominant tree species(groups)in the stand and using statistical inference based on sample information and prior information of CNN,suitable model structures for each tree species(group)were obtained through training.Using basically consistent modeling data,traditional tree height equations were solved,and the modeling plots that did not participate in the modeling were used as a validation set for comparative analysis based on six classical models of nonlinear models or nonlinear mixed effects and three CNN models based on activation functions.The results showed that the RMSE(root-mean-square error)values of Näslund,Curtis,Logistic,Weibull,Gomperz,and Korf traditional models and the L-M model(Model I)ranged from 2.5 to 5.6.The CNN model with ReLU activation function(Model II)had a RMSE of 2.304 2 and a R2 of 0.814 9,while the CNN model with Logistic activation function(Model III)had a R2 of 0.958 8.The activation function models of CNN do not rely on empirical model selection.Compared with traditional empirical models,the CNN model of tree height-diameter at breast height(DBH)based on the Logistic equation has a higher determination coefficient and lower root mean square error,with generally higher fitting accuracy.It can better fit the growth patterns of different tree species,improve the accuracy and stability of predictions,and optimize the ecological and economic benefits of forestry.

关键词

森林培育/尾巨桉/混交林/树高/卷积神经网络

Key words

Forest cultivation/Eucalyptus urophylla×E.grandis/Mixed plantation/Tree height/Convolutional neural network

引用本文复制引用

任一平,杨梅,任世奇,朱慧,韦振道,伍琪..基于卷积神经网络的尾巨桉混交林胸径-树高模型[J].热带亚热带植物学报,2025,33(2):140-148,9.

基金项目

广西科技基地和人才专项(桂科AD20325008) (桂科AD20325008)

中央财政林业科技推广示范项目(2021TG18) (2021TG18)

广西林业科技推广示范项目(2021TG15)资助This work was supported by the Special Project for Science and Technology Base and Talent in Guangxi(Grant No.AD20325008),the Project for Forestry Science and Technology Extension Demonstration of Central Finance(Grant No.2021TG18),and the Project for Forestry Science and Technology Extension Demonstration in Guangxi(Grant No.2021TG15). (2021TG15)

热带亚热带植物学报

OA北大核心

1005-3395

访问量0
|
下载量0
段落导航相关论文