| 注册
首页|期刊导航|草业科学|基于随机森林算法的青藏高原AMSR2地表温度降尺度反演

基于随机森林算法的青藏高原AMSR2地表温度降尺度反演

胡翠琴 马英 黄晓东 赵林

草业科学2025,Vol.42Issue(1):11-22,12.
草业科学2025,Vol.42Issue(1):11-22,12.DOI:10.11829/j.issn.1001-0629.2023-0661

基于随机森林算法的青藏高原AMSR2地表温度降尺度反演

Downscaling algorithm for AMSR2 land surface temperature over the Tibetan Plateau using random forest

胡翠琴 1马英 2黄晓东 3赵林1

作者信息

  • 1. 南京信息工程大学地理科学学院,江苏南京 210041
  • 2. 兰州大学草地农业科技学院/草地农业生态系统国家重点实验室,甘肃兰州 730020
  • 3. 南京信息工程大学地理科学学院,江苏南京 210041||兰州大学草地农业科技学院/草地农业生态系统国家重点实验室,甘肃兰州 730020
  • 折叠

摘要

Abstract

Land surface temperature(LST)is an important parameter in land surface process research,significantly influencing the energy radiation balance and climate system changes.The Tibetan Plateau,a sensitive and ecologically vulnerable region,is particularly susceptible to global change,making high-precision surface temperature data essential for clarifying regional climate change and its impacts.This study utilizes surface temperature observations from meteorological stations,Advanced Microwave Scanning Radiometer(AMSR)passive microwave brightness temperature data,and topographic factors to construct an LST downscaling model based on Random Forest.The model generates daily LST with a resolution of 1 km for the year 2013.Results indicate that the downscaled LST is highly accuracy,with the downscaling inversion accuracy for nighttime LST being higher than that for daytime.The root mean square errors(RMSE)for daytime and nighttime LST are 4.31 K and 1.33 K,respectively.Compared to the MYD11A1 LST product,the RMSE for downscaled daytime and nighttime LST is reduced by 0.92 K and 0.31 K,respectively,with a smaller bias of-1.96 K at night.Furthermore,the model exhibits good stability under different land cover types,latitudes,and slope conditions.This research provides valuable insights for the development and improvement of LST downscaling models and products.

关键词

地表温度/降尺度/随机森林/高精度/青藏高原

Key words

surface temperature/downscale/random forest/high precision/Tibetan Plateau

引用本文复制引用

胡翠琴,马英,黄晓东,赵林..基于随机森林算法的青藏高原AMSR2地表温度降尺度反演[J].草业科学,2025,42(1):11-22,12.

基金项目

国家自然科学基金面上项目(42471342) (42471342)

草业科学

OA北大核心

1001-0629

访问量0
|
下载量0
段落导航相关论文