| 注册
首页|期刊导航|草业科学|基于高光谱遥感的克氏针茅群落生物量估算

基于高光谱遥感的克氏针茅群落生物量估算

程云湘 贾子玉 庄前友 红梅 张凡凡

草业科学2025,Vol.42Issue(1):23-34,12.
草业科学2025,Vol.42Issue(1):23-34,12.DOI:10.11829/j.issn.1001-0629.2023-0682

基于高光谱遥感的克氏针茅群落生物量估算

Estimation of Stipa krylovii biomass based on hyperspectral remote sensing

程云湘 1贾子玉 2庄前友 3红梅 4张凡凡1

作者信息

  • 1. 内蒙古大学蒙古高原生态学与资源利用教育部重点实验室/内蒙古草地生态学重点实验室—省部共建国家重点实验室培育基地/内蒙古大学生态与环境学院,内蒙古呼和浩特 010021
  • 2. 内蒙古大学蒙古高原生态学与资源利用教育部重点实验室/内蒙古草地生态学重点实验室—省部共建国家重点实验室培育基地/内蒙古大学生态与环境学院,内蒙古呼和浩特 010021||中国农业大学草业科学与技术学院,北京 100193
  • 3. 赤峰市森林草原保护发展中心,内蒙古赤峰 024314
  • 4. 鄂尔多斯市自然资源局,内蒙古鄂尔多斯 017010
  • 折叠

摘要

Abstract

Hyperspectral remote sensing technology can provide an estimate of the the above-ground biomass(AGB)of grasslands efficiently,non-destructively,and rapidly.This is of great significance for the dynamic monitoring and efficient management of grassland animal husbandry and the balance between supply and demand of forage and livestock.In this study,we obtained spectral reflectance and AGB data from Xianghuang Banner pasture in Xilin Gol League,Inner Mongolia,to explore the most appropriate spectral variables and vegetation index for estimating the AGB of the Stipa krylovii community during the growing season.Among other variables,the original hyperspectral data,first-order differential(trilateral optical parameters),vegetation index,green peak and red valley values were used.A model for estimation of AGB was established using regression models.The accuracy of different models was compared using R-square(R2),root mean square error(RMSE),and mean relative error(MRE)as loss functions.The results show that the Stipa community exhibited dynamic changes throughout the growth of forage,with the AGB increasing gradually in July-August and decreasing significantly in August-September.Differential processing of the original hyperspectrum could improve the correlation between the sensitive band and AGB.Among the hyperspectral variables,the linear model constructed using the red-edge slope(Dr)had the best accuracy(R2=0.94,RMSE=1.97 g·m-2,and MRE=1.97 g·m-2).For the vegetation indexes,the polynomial model constructed using soil-adjusted vegetation index had the best accuracy(R2=0.92,RMSE=1.15 g·m-2,and MRE=1.39 g·m-2).This study provides a scientific basis for estimation of the AGB of Stipa communities with different hyperspectral variables and offers a method of and technical support for rapid and accurate remote sensing monitoring of natural grassland in pastoral areas.

关键词

生物量/高光谱遥感/模型估测/波段优选/植被指数/光谱变量

Key words

biomass/hyperspectral remote sensing/model estimation/band optimization/vegetation index/spectral variable

引用本文复制引用

程云湘,贾子玉,庄前友,红梅,张凡凡..基于高光谱遥感的克氏针茅群落生物量估算[J].草业科学,2025,42(1):23-34,12.

基金项目

蒙古高原生态与资源利用教育部重点实验室开放基金课题(KF2023004) (KF2023004)

中国科学院战略性先导科技专项(A类)(XDA26000000) (A类)

内蒙古自治区科技重大专项(2021ZD0044) (2021ZD0044)

草业科学

OA北大核心

1001-0629

访问量0
|
下载量0
段落导航相关论文