| 注册
首页|期刊导航|电源技术|基于GRU软测量与卡尔曼滤波的电池SOC快速估计

基于GRU软测量与卡尔曼滤波的电池SOC快速估计

陈志宣 王浩 陆玲霞 华思聪 和嘉睿 于淼

电源技术2025,Vol.49Issue(4):740-749,10.
电源技术2025,Vol.49Issue(4):740-749,10.DOI:10.3969/j.issn.1002-087X.2025.04.009

基于GRU软测量与卡尔曼滤波的电池SOC快速估计

Fast estimation of battery SOC based on GRU soft sensing and Kalman filter

陈志宣 1王浩 2陆玲霞 1华思聪 2和嘉睿 1于淼1

作者信息

  • 1. 浙江大学电气工程学院,浙江 杭州 310027
  • 2. 杭州高特电子设备股份有限公司,浙江 杭州 310023
  • 折叠

摘要

Abstract

The state of charge(SOC)of lithium-ion battery plays a crucial role in battery balancing,energy usage optimizing,etc.To address the issue of heavy computational burden caused by the non-linearity of state-space equations in model-based SOC estimation methods,gated recurrent units(GRU)was used for soft sensing of SOC.Then linear state-space equations were constructed by using the measured SOC as an output variable and the Kalman filter(KF)was applied to estimate SOC.Under random driving cycles,the proposed method achieves a maximum absolute error of 0.017 in SOC estimation,while also offering fast estimation speed.Further study indicates that there are sig-nificant differences in the parameters of battery models under different charging and discharging rates,leading to lower SOC estimation accuracy of model-based methods in complex conditions.In contrast,the proposed GRU-KF method,due to its independence from precise battery models,dem-onstrates better adaptability to complex conditions.

关键词

锂离子电池/SOC估计/门控循环单元/软测量/卡尔曼滤波

Key words

lithium-ion battery/SOC estimation/gated recurrent unit/soft sensing/Kalman filter

分类

信息技术与安全科学

引用本文复制引用

陈志宣,王浩,陆玲霞,华思聪,和嘉睿,于淼..基于GRU软测量与卡尔曼滤波的电池SOC快速估计[J].电源技术,2025,49(4):740-749,10.

基金项目

浙江省2024年度"尖兵""领雁"研发计划项目[2024C01237(SD2)] (SD2)

电源技术

OA北大核心

1002-087X

访问量0
|
下载量0
段落导航相关论文