| 注册
首页|期刊导航|地震地磁观测与研究|基于支持向量机和BP神经网络法的地震与爆破事件的自动识别

基于支持向量机和BP神经网络法的地震与爆破事件的自动识别

贾昊东 王禄军 王耀临 胡玮 冯雪东 石伟 于建明 周煊超

地震地磁观测与研究2025,Vol.46Issue(1):49-56,8.
地震地磁观测与研究2025,Vol.46Issue(1):49-56,8.DOI:10.3969/j.issn.1003-3246.2025.01.007

基于支持向量机和BP神经网络法的地震与爆破事件的自动识别

Automatic identification of earthquake and blasting events based on support vector machines and BP neural network methods

贾昊东 1王禄军 2王耀临 1胡玮 1冯雪东 1石伟 1于建明 3周煊超3

作者信息

  • 1. 中国内蒙古自治区 015000 巴彦淖尔地震监测中心站
  • 2. 中国呼和浩特 010010 内蒙古地震台
  • 3. 中国呼和浩特 010010 内蒙古自治区地震局
  • 折叠

摘要

Abstract

This paper aims to identify,compare,and analyze the natural earthquake and artificial blasting events recorded by three seismic stations of the Uga River,Uligi,and Ceke under the jurisdiction of the Bayannur Earthquake Monitoring Center Station.Firstly,the selected seismic records of earthquake and blasting events are decomposed using the wavelet base functions of sym6,db7,and rbio1.5 by SWT,DWT,and WPT,and the corresponding approximation coefficients and detail coefficients are obtained after decomposition.Then,the energy ratio,energy entropy,and Shannon entropy of each layer are extracted and used as characteristic parameters individually,in pairs,and combination.Finally,the BP neural network and support vector machine(SVM)are used to train the feature parameters,and the recognition model suitable for the central station is determined by training and comparing the recognition rate of the two methods.The analysis results show that the support vector machine is more suitable for the Bayannur station,and its recognition rate reaches 95%.

关键词

支持向量机/BP神经网络/小波变换/事件自动识别

Key words

support vector machines/BP neural networks/wavelet transform/automatic identification of events

引用本文复制引用

贾昊东,王禄军,王耀临,胡玮,冯雪东,石伟,于建明,周煊超..基于支持向量机和BP神经网络法的地震与爆破事件的自动识别[J].地震地磁观测与研究,2025,46(1):49-56,8.

基金项目

中国地震局监测、预报、科研三结合课题(项目编号:3JH-202301009) (项目编号:3JH-202301009)

地震地磁观测与研究

1003-3246

访问量0
|
下载量0
段落导航相关论文