| 注册
首页|期刊导航|福州大学学报(自然科学版)|融合拉普拉斯位置编码和自注意力机制的图神经网络

融合拉普拉斯位置编码和自注意力机制的图神经网络

邹成龙 李伟诺 黄梅香 林艺东

福州大学学报(自然科学版)2025,Vol.53Issue(2):127-134,8.
福州大学学报(自然科学版)2025,Vol.53Issue(2):127-134,8.DOI:10.7631/issn.1000-2243.24156

融合拉普拉斯位置编码和自注意力机制的图神经网络

Graph neural network incorporating Laplacian position encoding and self-attention mechanism

邹成龙 1李伟诺 1黄梅香 1林艺东1

作者信息

  • 1. 闽南师范大学数学与统计学院,福建 漳州 363000
  • 折叠

摘要

Abstract

In order to solve the problem of insufficient structure information captured by existing posi-tion encoding and limited expression ability of spectral graph filters,the LESpecformer model architec-ture based on Laplacian position encoding and self-attention mechanism is proposed.Firstly,this paper introduces the Laplacian position encoding for sensing the position information of different nodes in the graph structure,which improves the ability of the model to learn the relative position information of different nodes,and then captures the global information of the graph structure.Secondly,based on the set of eigenvalues fused with Laplacian position encoding,the self-attention mechanism is used to adaptively learn the dependencies between eigenvalues and obtain effective new basis representations,which facilitates the proposed model in learning better node embeddings,and thus improves the accu-racy of node classification.Finally,compared with different baseline networks on six graph datasets,the experimental results show that the performance of the proposed LESpecformer is optimal.

关键词

谱图滤波器/拉普拉斯位置编码/自注意力机制/图神经网络

Key words

spectral graph filters/Laplacian position encoding/self-attention mechanism/graph neural network

分类

信息技术与安全科学

引用本文复制引用

邹成龙,李伟诺,黄梅香,林艺东..融合拉普拉斯位置编码和自注意力机制的图神经网络[J].福州大学学报(自然科学版),2025,53(2):127-134,8.

基金项目

国家自然科学基金资助项目(12201284) (12201284)

福建省自然科学基金资助项目(2022J05169) (2022J05169)

闽南师范大学基金资助项目(KJ2021020&MSGJB2022010) (KJ2021020&MSGJB2022010)

福州大学学报(自然科学版)

OA北大核心

1000-2243

访问量0
|
下载量0
段落导航相关论文