| 注册
首页|期刊导航|华中农业大学学报|基于双通道分层协同的CEH-YOLOv8鱼体病害检测方法

基于双通道分层协同的CEH-YOLOv8鱼体病害检测方法

荣弘扬 汤永华 林森 张志鹏 王腾川 刘兴通

华中农业大学学报2025,Vol.44Issue(2):83-93,11.
华中农业大学学报2025,Vol.44Issue(2):83-93,11.DOI:10.13300/j.cnki.hnlkxb.2025.02.009

基于双通道分层协同的CEH-YOLOv8鱼体病害检测方法

A method of detecting fish diseases with CEH-YOLOv8 based on dual-channel and hierarchical synergism

荣弘扬 1汤永华 1林森 2张志鹏 1王腾川 1刘兴通1

作者信息

  • 1. 沈阳工业大学信息科学与工程学院/沈阳工业大学辽宁省机器视觉重点实验室,沈阳 110870
  • 2. 沈阳理工大学自动化与电气工程学院,沈阳 110159
  • 折叠

摘要

Abstract

A method of detecting fish diseases with CEH-YOLOv8 based on dual-channel and hierar-chical synergism was developed to solve the problems of the irregular shapes,unclear textures,and scat-tered disease spots making it difficult to localize the true lesion areas in the detection of fish diseases.A du-al-channel feature extraction network was introduced to enhance the ability of model to extract irregular le-sion areas with unclear textures.Then,an efficient channel spatial attention(ECSA)mechanism was pro-posed to improve the capability of model to recognize distributed targets.A hierarchical and balanced fea-ture pyramid network(HBFPN)for was presented to reinforce the improved backbone network and per-form hierarchical feature fusion on the information extracted from the backbone network at different levels to enhance the ability of model to express feature.The results showed that the CEH-YOLOv8 network had an accuracy rate of 83.2%,a recall rate of 72.5%,and a mean average precision(mAP)of 76.2%in detecting fish diseases,respectively.Compared with the state-of-the-art(SOAT)YOLOv10 method and the original model,it increased the accuracy rate,recall rate,and mAP by 6.9,11.6,and 11.9 per-cent points,and 4.3,6.9,and 6 percent points,respectively.The inference time for a single frame was 9.1 ms.It is indicated that the improved YOLOv8 network can accurately screen fish with diseases and be used for early detection of fishery diseases to reduce economic losses.

关键词

鱼体病害检测/YOLOv8/特征提取网络/注意力机制/特征金字塔

Key words

detection of fish diseases/YOLOv8/feature extraction network/attention mechanism/feature pyramid

分类

信息技术与安全科学

引用本文复制引用

荣弘扬,汤永华,林森,张志鹏,王腾川,刘兴通..基于双通道分层协同的CEH-YOLOv8鱼体病害检测方法[J].华中农业大学学报,2025,44(2):83-93,11.

基金项目

辽宁省机器人联合基金项目(20180520022) (20180520022)

辽宁省应用基础研究计划项目(2023JH2/101300237) (2023JH2/101300237)

华中农业大学学报

OA北大核心

1000-2421

访问量0
|
下载量0
段落导航相关论文