| 注册
首页|期刊导航|军事医学|基于图像的位点原位基因表达预测的方法

基于图像的位点原位基因表达预测的方法

岳良琛 荣振

军事医学2025,Vol.49Issue(2):90-100,11.
军事医学2025,Vol.49Issue(2):90-100,11.DOI:10.7644/j.issn.1674-9960.2025.02.002

基于图像的位点原位基因表达预测的方法

An image-based approach to prediction of in situ gene expressions at specific loci

岳良琛 1荣振1

作者信息

  • 1. 军事科学院军事医学研究院,北京 100850
  • 折叠

摘要

Abstract

Objective To develop a deep learning algorithm(Bio-section to Gene,B2G)for predicting spatially resolved gene expression profiles directly from histopathological images.Methods Digital histopathological images were processed through an integrated framework comprising convolutional neural networks(CNNs)and the Transformer architecture.Local histological features were extracted by the CNN module while global feature correlations were captured by the Transformer module.Cellular characteristics in digital tissue sections were systematically identified,followed by regression-based prediction of spatially resolved gene expression profiles.Results The B2G algorithm demonstrated significantly higher prediction accuracy than existing methods(weighted median PCC 0.1776).This framework exhibited robust performance across multiple cancer types and histological preparation protocols.Conclusion This computational approach may provide a morphology-driven strategy for spatial transcriptomic analysis.The framework could facilitate cost-effective biomarker discovery in clinical specimens while reducing reliance on specialized molecular techniques.Additionally,it might enable further exploration of tumor microenvironment heterogeneity.

关键词

深度学习/生物切片到基因/数字组织病理学切片图像/基因表达

Key words

deep learning/B2G/digital histopathology slide images/gene expression

分类

生物学

引用本文复制引用

岳良琛,荣振..基于图像的位点原位基因表达预测的方法[J].军事医学,2025,49(2):90-100,11.

军事医学

1674-9960

访问量0
|
下载量0
段落导航相关论文