| 注册
首页|期刊导航|南京信息工程大学学报|基于改进的LBP和Gabor滤波器的纹理特征提取方法

基于改进的LBP和Gabor滤波器的纹理特征提取方法

陈佳明 陈旭 任硕 邸宏伟

南京信息工程大学学报2025,Vol.17Issue(2):227-234,8.
南京信息工程大学学报2025,Vol.17Issue(2):227-234,8.DOI:10.13878/j.cnki.jnuist.20230921003

基于改进的LBP和Gabor滤波器的纹理特征提取方法

Texture feature extraction based on improved LBP and Gabor filter

陈佳明 1陈旭 2任硕 1邸宏伟1

作者信息

  • 1. 南京信息工程大学自动化学院,南京,210044
  • 2. 南京信息工程大学自动化学院,南京,210044||南京信息工程大学 大气环境与装备技术协同创新中心,南京,210044
  • 折叠

摘要

Abstract

Texture extraction,a pivotal task in computer vision,significantly influences the accuracy of texture clas-sification.Traditional single-texture extraction methods often fail to accurately describe the characteristics of various textures.To address this issue,this paper proposes a texture extraction approach based on an Improved Position Local Binary Pattern(IPLBP)and Gabor filters.The proposed IPLBP enhances texture description capability by in-tegrating texture position information into the LBP framework.Specifically,the IPLBP algorithm captures local texture nuances,while Gabor filters extract global texture attributes.Subsequently,these two complementary feature sets are fused and classified using Support Vector Machine(SVM).Experimental results demonstrate that the pro-posed approach exhibits excellent performance in texture material classification tasks.Notably,compared to traditional LBP algorithms,the IPLBP-Gabor filter approach more accurately discerns the subtle differences between diverse texture features,thereby enhancing texture classification accuracy.

关键词

纹理提取/局部二值模式/Gabor滤波器/支持向量机

Key words

texture extraction/local binary pattern(LBP)/Gabor filter/support vector machine(SVM)

分类

计算机与自动化

引用本文复制引用

陈佳明,陈旭,任硕,邸宏伟..基于改进的LBP和Gabor滤波器的纹理特征提取方法[J].南京信息工程大学学报,2025,17(2):227-234,8.

基金项目

江苏省自然科学基金(BK20170955) (BK20170955)

南京信息工程大学学报

OA北大核心

1674-7070

访问量4
|
下载量0
段落导航相关论文