| 注册
首页|期刊导航|智能系统学报|用于高维小样本特征选择的超网络设计

用于高维小样本特征选择的超网络设计

魏俊伊 董红斌 余紫康

智能系统学报2025,Vol.20Issue(2):465-474,10.
智能系统学报2025,Vol.20Issue(2):465-474,10.DOI:10.11992/tis.202402018

用于高维小样本特征选择的超网络设计

Hypernetwork design for feature selection of high-dimensional small samples

魏俊伊 1董红斌 1余紫康1

作者信息

  • 1. 哈尔滨工程大学 计算机科学与技术学院,黑龙江 哈尔滨 150001
  • 折叠

摘要

Abstract

Feature selection is a widely recognized challenge across various industries.They typically target high-dimen-sional datasets with fewer samples,such as those in biology and medicine field.Many regularization networks outper-form complex network structures on such datasets.However,numerous underlying feature relationships can still be overfitted,particularly with limited data.This study proposes an end-to-end sparse reconstruction network to address this issue.First,the model enhances features through sparsity and singular value embedding.Then,it trains the embed-ding matrix through a parallel auxiliary network to reconstruct prediction weights,which implements a parameter-redu-cing super-network learning approach.This approach reduces the impact of overfitting on networks with fewer paramet-ers,which effectively mitigates the influence of ineffective parameters on the network.Experiments conducted on 12 high-dimensional small-sample datasets in biology and medicine field reveal an average improvement of 3.26 percent-age point in classification accuracy after dimensionality reduction in eight feature selection networks.Furthermore,the roles of the disintegration layer,reconstruction,and correlation layer are separately validated through ablation experi-ments,followed by weight result analysis,which further elucidates the extended applications of the model.

关键词

特征选择/正则化网络/过拟合/端到端/稀疏重构/奇异值/辅助网络/超网络/高维小样本

Key words

feature selection/regularization network/overfitting/end-to-end/sparse reconstruction/singular value/aux-iliary network/hypernetwork/high-dimensional small sample

分类

计算机与自动化

引用本文复制引用

魏俊伊,董红斌,余紫康..用于高维小样本特征选择的超网络设计[J].智能系统学报,2025,20(2):465-474,10.

基金项目

黑龙江自然科学基金项目(LH2020F023). (LH2020F023)

智能系统学报

OA北大核心

1673-4785

访问量0
|
下载量0
段落导航相关论文