| 注册
首页|期刊导航|智能系统学报|低光照环境下基于定制椭圆的无人船姿态视觉测量

低光照环境下基于定制椭圆的无人船姿态视觉测量

邓冬进 葛泉波 戴跃伟

智能系统学报2025,Vol.20Issue(2):486-494,9.
智能系统学报2025,Vol.20Issue(2):486-494,9.DOI:10.11992/tis.202403018

低光照环境下基于定制椭圆的无人船姿态视觉测量

Visual measurement of unmanned ship attitude based on custom elliptical in a low-light environment

邓冬进 1葛泉波 2戴跃伟3

作者信息

  • 1. 南京信息工程大学 电子与信息工程学院,江苏 南京 210044
  • 2. 南京信息工程大学 自动化学院,江苏 南京 210044||江苏大数据分析与智能系统省高校重点实验室,江苏 南京 210044||大气环境与装备技术协同创新中心,江苏 南京 210044
  • 3. 南京信息工程大学 电子与信息工程学院,江苏 南京 210044||南京应用数学中心,江苏 南京 210044
  • 折叠

摘要

Abstract

This study proposes an attitude estimation method for unmanned ships using fast ellipse detection to address inaccurate monocular visual attitude measurement caused by low image contrast and increased noise under low-light conditions.First,it employs an adaptive color threshold segmentation algorithm with color and contrast enhancement to optimize edge detection.Second,eight-neighborhood tracking combined with the arc aspect ratio method is designed to eliminate the pseudo-arc caused by noise in low-illumination images.The improved arc feature mapping technology is also used to further distinguish the real elliptical arc segment from the pseudo-arc segment generated by noise,which significantly reduces the computational burden of parameter fitting.Finally,a geometric constraint strategy is estab-lished to eradicate the ambiguity of elliptic attitude angle calculation using the parallelism of the elliptic plane normal vector and the rectangular normal vector,which improves the robustness of the algorithm in low-light environments.Ex-periments indicate that the proposed algorithm offers faster detection speed and higher accuracy for unmanned ship atti-tude estimation.

关键词

阈值分割/弧弦比/特征映射/二义性/八邻域跟踪/姿态视觉/椭圆平面法/快速椭圆检测

Key words

threshold segmentation/arc-to-chord ratio/feature mapping/ambiguity/eight-neighborhood tracking/pos-ture vision/elliptical plane method/fast ellipse detection

分类

信息技术与安全科学

引用本文复制引用

邓冬进,葛泉波,戴跃伟..低光照环境下基于定制椭圆的无人船姿态视觉测量[J].智能系统学报,2025,20(2):486-494,9.

基金项目

国家自然科学基金项目(62033010) (62033010)

江苏高校"青蓝工程"项目(R2023Q07). (R2023Q07)

智能系统学报

OA北大核心

1673-4785

访问量0
|
下载量0
段落导航相关论文